

Yannis PAPAPHILIPPOU

October 16th-18th, 2007

Outline

M. Korostelev

CLIC damping rings design (PhD thesis, EPFL 2006) and open issues

- Design goals and challenges
- Input parameters Pre-damping rings
- Lattice choice and optics optimisation
- Circumference (realistic drift space and magnets)
- Wiggler design and parameter scan (prototypes)
- Synchrotron radiation absorption
- Chromaticity correction and dynamic aperture
- Low emittance tuning in the presence of coupling (tolerances)
- e-cloud and other collective effects

-Damping ring design goals

Normalised r.m.s. Emittances at Damping Ring Extraction

- Ultra-low emittance and high beam polarisation impossible to be produced by conventional particle source:
 - Ring to damp the beam size to desired values through synchrotron radiation
- Intra-beam scattering due to high bunch current blows-up the beam
 - Equilibrium "IBS dominated" emittance should be reached fast to match collider high repetition rate
- Other collective effects (e.g. e⁻cloud) may increase beam losses
- Starting parameter dictated by design criteria of the collider (e.g. luminosity), injected beam characteristics or compatibility with the downstream system parameters (e.g. bunch compressors)

Horizontal Emittance (µm)

PARAMETER	NLC	CLIC
bunch population (10 ⁹)	7.5	4.1
bunch spacing [ns]	1.4	0.5
number of bunches/train	192	316
number of trains	3	1
Repetition rate [Hz]	120	50
Extracted hor. normalized emittance [nm]	2370	<680
Extracted ver. normalized emittance [nm]	<30	< 20
Extracted long. normalized emittance [eV m]	10890	<5000
Injected hor. normalized emittance [µm]	150	63
Injected ver. normalized emittance [µm]	150	1.5
Injected long. normalized emittance [keV m]	13.18	1240

-CLIC Pre-damping rings

 Pre-damping rings needed in order to achieve injected beam size tolerances at the entrance of the damping rings

CLIC

- Most critical the positron damping ring
 - Injected emittances ~ 3 orders of magnitude larger than for electrons
- CLIC PDR parameters very close to those of NLC
 - (I. Raichel and A. Wolski, EPAC04)
- Similar design may be adapted to CLIC
 - □ Lower vertical emittance
 - □ Higher energy spread

PDR Parameters	CLIC	PDR	
Energy [GeV]	2.424	1.98	
Bunch population [10 ⁹]	4.5	7.5	
Bunch length [mm]	10	5.1	
Energy Spread [%]	0.5	0.09	
Long. emittance [eV.m]	121000	9000	
Hor. Norm. emittance [nm]	63000	46000	
Ver. Norm. emittance [nm]	1500	4600	

Injected Parameters	e⁻	e ⁺	
Bunch population [10 ⁹]	4.7	6.4	
Bunch length [mm]	1	5	
Energy Spread [%]	0.07	1.5	
Long. emittance [eV.m]	1700	240000	
Hor., Ver Norm. emittance [nm]	$100 \ge 10^3$	9.7 x 10 ⁶	

L. Rinolfi

TME arc cell

TME cell chosen for compactness and efficient emittance minimisation over Multiple Bend Structures (or achromats) used in light sources

- Large phase advance necessary to achieve optimum equilibrium emittance
- Very low dispersion
- Strong sextupoles needed to correct chromaticity
- Impact in dynamic aperture

Y.P., 18/10/2007

S, (m)

Energy	2.42 GeV
Field of the bending magnet, B_a	0.932 T
Length of the bending magnet	0.545 m
Bending angle	$2\pi/100$
Bending radius	8.67 m
Length of the cell, L_{TME}	1.73 m
Horizontal phase advance, μ_x	210°
Vertical phase advance, μ_y	90°
Emittance detuning factor, ϵ_r	1.8
Horizontal chromaticity, $\partial \nu_x / \partial \delta$	-0.84
Vertical chromaticity, $\partial \nu_y / \partial \delta$	-1.18
Average horizontal beta function, $\langle \beta_x \rangle$	0.847 m
Average vertical beta function, $\langle \beta_y \rangle$	2.22 m
Average horizontal dispersion, $\langle D_x \rangle$	0.0085 m
Relative horizontal beta function, $\beta_r = \beta^* / \beta_m^*$	0.113/0.07 = 1.6
Relative horizontal dispersion, $D_r = D^*/D_m^*$	0.00333/0.00143 = 2.33

Phase advance choice

- Optimum horizontal phase advance of cells for minimising zero current emittance is fixed (284° for TME cells)
- Vertical phase advance is almost a free parameter
- First iteration based on lattice considerations, i.e. comfortable beta functions and relaxed quadrupole strengths and chromaticity
- Low horizontal phase advance gives increased momentum compaction factor (high dispersion) but also chromaticity

Phase advance with IBS

- Horizontal phase advance for minimum horizontal emittance with IBS, is found in an area of small horizontal beta and moderate dispersion functions (between $1.2-1.3\pi$, for CLIC damping rings)
- Optimal vertical phase advance quite low (0.2π)
- The lowest longitudinal emittance is achieved for high horizontal and low vertical phase advances
 - The optimal point has to be compromised due to chromaticity considerations and dynamic aperture optimisation.

Circumference

Big enough to accommodate bunch train

CLIC

- Drift space increase essential for establishing realistic lattice, reserving enough space for instrumentation and other equipment
- For constant number of dipoles (TME cells), zero equilibrium emittance is independent of circumference
- Normalised emittance with IBS increases with circumference (no wigglers)
 - □ When dipole lengths increase with drifts, emittance grows due to increase of damping time (inversely proportional to radiation integral I₂ which decreases with length)
 - □ When only drifts increase, smaller emittance growth due to increase of optics functions
 - □ Impact on chromaticity + dynamic aperture
- Compensation may be achieved due to increase of bunch length with circumference (momentum compaction)
- Linear optics has to be reviewed with realistic magnet parameters

Y.P., 18/10/2007

Damping wigglers

- Damping wigglers are used to increase radiation damping and reduce the effect of IBS in order to reach target emittances
- The total length of wigglers is chosen by its dependence with the peak wiggler field and relative damping factor F_w

CLIC

- Higher damping factor can be achieved for higher fields and longer wiggler occupied straight section
- Relative momentum spread is independent of total length but increases with wiggler field

0.12

0.11

0.10

0.09

0.08

0.07

Wigglers effect in emittance

- For fixed value of wiggler period, equilibrium emittance minimum for particular value of wiggler field
- By reducing total length, optimal values necessitate higher fields and lower wiggler periods
- Optimum values change when IBS included, necessitating higher fields
- Damping rings cannot reach 450nm with normal conducting wigglers Y.P., 18/10/2007 CLIC Workshop '07 12

Wigglers' effect with IBS

- The choice of the wiggler parameters is finally dictated by their technological feasibility.
 - Normal conducting wiggler of 1.7T can be extrapolated by existing designs
 - Super-conducting options have to be designed, built and tested

Y.P., 18/10/2007

CLIC Workshop '07

For higher wiggler field and smaller period the transverse emittance computed with IBS gets smaller

 The longitudinal emittance has a different optimum but it can be controlled with the RF voltage

Wiggler prototypes

Two wiggler prototypes
 2.5T, 5cm period, built by BINP
 2.7T, 2.1cm period, built by ANKA

CLIC

- Wiggler prototype of 2.6T, 4cm period
- Aperture of 8-10mm

Х

- Current density can be increased by using different conductor type
- Establish field error tolerances for both designs
- Short version to be installed and tested at ANKA (GADGET)
- Measurements of emittance growth due to IBS in a wiggler dominated ring (ANKA at injection energy of 0.5 GeV)

Parameters	BINP	ANKA
B _{peak} [T]	2.5	2.7
$\lambda_{\rm W} [{\rm mm}]$	50	21
Beam aperture full height [mm]	12	5
Conductor type	NbTi	NbSn ₃
Operating temperature [K]	4.2	4.2

Betatron amplitude functions [m] versus distance [m]

- Synchrotron Radiation and losses

- Regularly distributed short absorbers with apertures of 4-6mm considered for SR power of around 11kW based on the old parameters (reduced bunch charge, increased number of bunch trains, permanent magnet wiggler)

CLIC

- Need of a terminal absorber at the end of the straight for absorbing
 90 kW
- For the new parameters, beam current of 0.17A produces synchrotron radiation of around 9.2kW in the high-field superconducting wiggler (7.9kW for the lower field)
- Considering a scheme with a long bunch train filling the whole ring, the above values are raised by a factor of 7!
- Review absorber design, considering super-conducting wiggler quench protection and fit it into ring layout

Non-linear dynamics

Two sextupole schemes 2 and 9 families of sextupoles

dipol

QF SF QD SD QD SF QF

- Dynamic aperture is $9\sigma_x$ in the horizontal and $14\sigma_y$ in the vertical plane (comfortable for injection)
- Error tables for all magnets including superconducting wigglers should be considered and optimised
- Resonance correction and DA optimisation with sextupoles and/or octupoles using modern techniques (normal forms, frequency maps, ...)

Y.P., 18/10/2007

Coupling correction

 Correction with dispersion free steering (orbit and dispersion correction)

CLIC

- Skew quadrupole correctors for correcting dispersion in the arc and emittance minimisation
- Iteration of dynamic aperture evaluation and optimisation after correction
- In CLIC damping rings, the effect of vertical dispersion is dominant (0.1% of coupling and 0.25µm of dispersion invariant)
- Effect of super-conducting wigglers field errors
- Review of linear correction systems (orbit, beta variation, coupling) with realistic magnet parameters and re-establishment of alignment tolerances

Imperfections	Simbol	1 r.m.s.	
Quadrupole misalignment	$\langle \Delta Y_{\rm quad} \rangle, \langle \Delta X_{\rm quad} \rangle$	$90 \ \mu m.$	
Sextupole misalignment	$\langle \Delta Y_{\rm sext} \rangle, \ \langle \Delta X_{\rm sext} \rangle$	$40 \ \mu \mathrm{m}$	
Quadrupole rotation	$\langle \Delta \Theta_{ m quad} angle$	$100 \ \mu rad$	
Dipole rotation	$\langle \Delta \Theta_{ m dipole \ arc} angle$	100 μ rad.	
BPMs resolution	$\langle R_{ m BPM} angle$	$2 \ \mu m.$	17

e⁻-cloud effect

D. Schulte, R. Wanzerberg, F. Zimmerman, ECLOUD'04

 Simulations using the FAKTOR2 code confirmed the importance of the effect

(W. Bruns and G. Rumolo, CLIC meeting 06/06/2007)

- □ Ante-chambers in dipoles and wigglers need to absorb **99.9%** of photon flux
- Secondary emission yield has to be less than 1.3
- e-cloud density of 3-5x10¹² m⁻³ in the wigglers (independently of density in dipoles) for beam to be stable
- Simulations have to be carried out for the newest parameter set
 - **Bunch** population of 4.1×10^9
 - □ Bunch spacing from 0.667 to 0.5ns
 - \square Wiggler field of 2.5T (or 2.7T)
- Inclusion of linear optics in HEADTAIL simulations and effect of non-linear chromaticity
 Y.P., 18/10/2007
 CLIC Workshot

	Chambers	PEY	SEY	$\frac{2}{[10^{12} e^{-}/m^3]}$
1		0.000576	1.3	0.04
	Diala		1.8	2
-		0.0574	1.3	7
111		0.0576	1.8	40
		0.00109	1.3	0.6
N.	XX/7° 1	0.109	1.3	45
	Wiggler		1.5	70
N.			1.8	80
5.1 5 4.9 4.8 4.7 4.6 3 4.5 4.4 4.3 4.2	- - ρ _{wig} = 5x10 -	¹² m ⁻³ , ρ _{dip} = 3	3x10 ¹¹ m	-3
4.1 shop '07	0 100	200 300	400	500 600

-e--cloud countermeasures

- Coating of vacuum chambers by a material (e.g. NEG) for lowering secondary emission yield (GADGET)
- Clearing electrodes
- Solenoids in field-free regions

CLIC

• Grooved surface of vacuum chamber

- Simulations showing reduction of SEY
- □ Verified experimentally in PEPII
- □ Slight resistive wall impedance increase

L. Wang et al., PAC2007

Other collective effects

Longitudinal and micro-wave instability

CLIC

- $\square \quad \text{Keil-Schnell-Boussard threshold} \quad \frac{Z_{||}}{n} = Z_0 \sqrt{\frac{\pi}{2}} \frac{\gamma \alpha_p \sigma_\delta^2 b^2}{N_{bp} r_0 \sigma_s} = 1.75\Omega$ is higher than scaled values from the KEKB LER
- Transverse coasting beam instability associated with transverse impedance

$$Z_{\perp} = Z_0 \frac{\gamma \alpha_p \sigma_\delta \sigma_s \nu_y \omega_0}{N_{bp} r_0 C} = 11.1 M\Omega/m$$

Detailed vacuum chamber design and impedance budget

- Coherent Synchrotron radiation has a minor effect of only 5% of bunch lengthening not causing any emittance blow-up or microwave instability
- Space-charge tune-shift is

higher than the acceptable value of 0.1 $\Delta \nu_y = \frac{N_{bp}r_0}{(2\pi)^{3/2}\gamma^3\sigma_s} \oint \frac{\beta_y}{\sigma_y(\sigma_x + \sigma_y)} ds \approx 0.15$ \Box To be taken into account in non-linear dynamics and working point choice

- Fast ion instabilities
 - Analytical estimates and simulations for old parameter set assuming total pressure of 1nTorr (20% CO, the rest hydrogen)
 - □ Ionisation cross-section of 0.2nTorr and 30% ion frequency spread
 - □ Ion accumulation avoided for train gap of a few meters
 - □ Review with new parameter set
- Toushek lifetime large enough compared to store time
- Resistive wall growth time estimated to around 2ms
- Couple bunch instabilities have to be avoided with design of HOM free RF cavities Y.P., 18/10/2007 CLIC Workshop '07 20

Damping rings' parameters

2005: original ring
2006a: super-conducting

mmm

wiggler considered

2006b: vertical dispersion included

2007a: 12GHz structure

2007b: reduced
bunch
population
2007c:
CLIC_G

Y.P., 18/10/2007

structure

PARAMETER	2005	2006a	2006b	2007a	2007b	2007c	
energy [GeV]		2.424					
circumference [m]	360	365.2			and we al		
bunch population [E+09]	2.50	2.56+5%		5.20+5%	4.00+10%	3.70+10%	
bunch spacing [ns]	0.	533		0.667		0.500	
number of bunches/train	1	110		311		316	
number of trains		4		1	1		
store time/train [ms]	1	13.3 20		13.3		.0	20
rms bunch length [mm]	1.55	1.51	1.59	1.49	1.53	1.53	
rms momentum spread [%]	0.126	0.136	0.130	0.138	0.135	0.134	
hor. normalized emittance [nm]	540	380	308	455	395	381	
ver. normalized emittance [nm]	3.4	2.4	3.9	4.4	4.2	4.1	
lon. normalized emittance [eV.m]	4725	5000	4982	4998	4993	4996	
(horizontal, vertical) tunes	(69.82, 34.86)			(69.82, 33.80	0)		
coupling [%]	0.6	0.13					
ver. dispersion invariant [µm]	0	0.248			Vertebus		
wiggler field [T]	1.7	2.5					
wiggler period [cm]	10	5					
energy loss/turn [MeV]	2.074	3.903					
hor./ver./lon./ damping times [ms]	2.8/2.8/1.4	1.5/1.5/0.75					
RF Voltage [MV]	2.39	4.25	4.185	4.345	4.280	4.115	
number of RF cycles		2		1.			
repetition rate [Hz]	150		All States	50			
RF frequency [GHz]	1.	875		1.4	199	2.00	

Bunch charge [10⁹]

For the CLIC damping rings, the horizontal normalized emittance scales approximately as $\gamma \epsilon_x \propto \sqrt{N_b/\sigma_z}$

- The above relationship is even more exact when the longitudinal emittance is kept constant (around 5000 eV.m, in the case of the CLIC damping rings)
- Vertical and longitudinal emittance weakly dependent on bunch charge, and linear with each other
- Numerical tools have to be optimised for evaluation of final emittance with IBS
- IBS theory and numerical tools have to be reviewed for non-Gaussian tails
- Demonstration of low-emittance in the presence of IBS needs to be proved experimentally Y.P., 18/10/2007
 CLIC Workshop '07

Concluding remarks

- Detailed and robust design of the CLIC damping rings, delivering target emittance with the help of super-conducting wigglers
 - □ Prototype to be built and tested at ANKA synchrotron
 - □ Radiation absorption and quench protection
- Areas needing further optimisation and/or detailed studies
 - Pre-damping ring optics design

CLIC

- □ Realistic damping ring cell length and magnet parameters
- □ Sextupole optimisation and non-linear dynamics including wiggler field errors
 - Linear and non-linear correction schemes
- □ Low emittance tuning and alignment tolerances
- □ IBS theory, numerical tools and experimental demonstration of low emittance
- □ Collective effects including electron cloud and fast ion instability
 - Detailed vacuum chamber design impedance budget
- □ Injection and extraction elements
- □ Design of HOM free high frequency RF cavities
- Diagnostics and feedback