PS2 Meeting

J-PARC main ring lattice An overview

Y. Papaphilippou

December 15th, 2006

Japan Proton Accelerator Research Complex comprising:

- A 600-MEV linac with a superconducting section for nuclear transmutation R&D
- A 3GeV Rapid Cycling Synchrotron (RCS) for a spallation neutron experimental area
- A 50GeV Main Ring (MR) for nuclear physics and neutrino experiments

Main Ring layout

- **1567.5m** long ring with triangular shape
- Three **406.4m** long arcs using a missing bend cell structure
- Three **116.1m** long straight sections with
 - □ Injection from the 3GeV RCS, scraper collimators and beam dump
 - Slow resonance extraction for K-ARENA (Nuclear and Physics studies facility)
 - RF and fast extraction for neutrinos to SuperKamiokande 15/12/2006 PS2 Meeting, Y. Papaphilippou

Main Ring parameters

Parameter	J-PARC	PS2
Circumference [m]	1567.5	1257
Injection energy [GeV]	3	3.5
Extraction energy [GeV]	50	50
Particles per pulse [10 ¹³]	33	3.2 - 13
Repetition rate [Hz]	0.3	0.21 - 0.42
Circulating current (a) injection [A]	12.4	1.2 - 4.8

fast beam extraction

PS2 Meeting, Y. Papaphilippou

Main Ring lattice

Design criteria

 Imaginary γ_t
 Long dispersion free straight sections to accommodate injection extraction RF and collimation

- Reasonable tuning range for tunes chromaticity and momentum compaction factor
- 3 super-periods
 Arc + Insertion
 Working point of (22.25, 22.23)

Main Ring lattice - arc

- Eight **50m**-modules per arc
 - **32** dipoles (5.85m), 4 families of $\stackrel{[f]}{\geq}$ **57** quadrupoles (1.26-1.86m)
- Module of 3 FODO cells
 - \Box (1/2D)BFBDOFODBFB(1/2D)
 - \Box Central half-cells without bend $\widehat{\exists}$
 - Split central QF for sextupole accommodation
- α_{c} of -0.001 (imaginary γ_{t} of 31.6i)

Reasonable β and γ maxima (35m, 3m)

Horizontal and vertical phase advance of $3\pi/2$, giving a total of 12π

 η_{x}, η_{y}

- Dispersion free straights, first order cancellation of sextupole resonance,
- \Box Vertical phase advance tunable down to 200° to avoid coupling resonance

Main Ring lattice – Insertion

- 3 central FODO cells of ~50m with doublet matching section in either side
 - □ 7 families of **15** quadrupoles (0.9-1.76m)
- FODO cells used for adjusting phase advance and collimation system
- Long half-cell for injection, beam dump and extraction
- Short half-cell, where β is maximum and α almost 0 for slow extraction electrostatic septum

Tune optimization

- Horizontal tune optimized varying insertion phase advance
 - Slow extraction devices fixes the phase relation among and reduces flexibility (tune of 22.33).
 - Without slow extraction constraint, tune range between 21.50 and 22.80.
- Vertical tune can be almost freely chosen in the range of 17.25 to 22.25
 - Using mostly the arc and less the insertion.
- Structure resonances to be avoided: $2\nu_x + 2\nu_y = n$, $2\nu_x - 2\nu_y = n$ $\nu_x = 22.5$, $\nu_y = 18$, 19.5, 21, 22.5

Momentum compaction knob

Lattice can be tuned for a range of α_c between 0.002 and $0.002 (\gamma_{t} \text{ of } 21 \text{ to } 21 \text{ i}),$ varying the vertical phase advance as a knob

Reasonable maxima for all optics function

Extrapolating to the desired α_c value for PS2 (-0.02) not evident

Main magnets

- Bending Magnet
 - Bending Radius 89.381 m
 - Field 0.143 T (for 3 GeV), 1.9 T (for 50 GeV)
 - Useful Aperture (horizontal) 120 mm
 - 🗆 Gap Height 106 mm
 - □ Length 5.85 m
 - 🗆 Number 96
- Sextupole Magnet (3 families)
 - □ Max. Field Gradient 230 T/m2
 - □ Aperture 136 mmf
 - □ Length 0.7 m
 - □ Number 72

- Quadrupole Magnet (11 families)
 Field Gradient 1.35 T/m (for 3 GeV)
 - \square 18 T/m (for 50 GeV)
 - □ Aperture (pole to pole) 130 mm
 - Useful Aperture (horizontal) 132
 mm
 - □ Length and Number
 - QDN, QFR and QDR 1.86 m (63)
 - QDS 1.76 m (6)
 - QDX and QDT 1.66 m (33)
 - QFN 1.56 m (48)
 - QFT 1.46 m (6)
 - QFX and QFS 1.26 m (54)
 - QFP 0.86 m (6)

Preliminary comments

- J-PARC module very similar to PS2 preliminary lattice design (J.Jowett)
 - Same length, number of cells, magnets, similar phase advances
 - ☐ Main difference DOFO structure (instead of FODO), and single dipole
 - □ Large imaginary (or real) transition energy
- 20% longer ring just by giving the appropriate space to straight sections
- Decreasing α_c pushes quadrupole strengths and optics functions to their limits and may necessitate a longer ring
- Independent insertion tuning gives enormous flexibility for injection, extraction collimation and RF optics constraints
- Without the momentum compaction constraint, ability to optimise the phase advance for 1st order cancellation of lattice non-linearities