PS2 meeting

> Optics optimization and chromaticity correction in PS2 NMC rings

Y. Papaphilippou

March 19th, 2007

Outline

- Optimised NMC ring with dispersion supressor
\square Refining the straight section matching
- Chromaticity correction
\square First order
\square Second order and chromatic beta beating

The NMC ring II

- Arc module with 1 asymmetric FODO cell with $4+3$ bends and a low-beta doublet with 4 families of quads, with max. strength of $0.1 \mathrm{~m}^{-2}$ and total length of 73 m
- Suppressing arc dispersion with phase advance close to multiple of 2π and 2 extra quad families
- Straight section with 7 FODO cells drift of 9.5 m) using 2 matching quadrupoles
■ Ring of 1346 m , with 10 quad families (max strength of $0.1 \mathrm{~m}^{-2}$)
\square Tunes of (13.8,13.4), γ_{t} of 10.9i, chromaticities of -18.7, -29.5
\square Max beta of 58 m and 56 m and min . and max. dispersion of $\mathbf{- 8 . 2 \mathrm { m }}$ and 10.2 m
- Matching not perfect for horizontal phase advance of 90° in the straights

Optimizing the arc module

- 1 symmetric FODO cell with $3+3$ bends and a low-beta doubletPhase advances of $294^{\circ}, 310^{\circ}$ per module
$\square \gamma_{t}$ of 10.2 i
$\square 4$ families of quads, with max. strength of $0.1 \mathrm{~m}^{-2}$
\square Max. beta of 49 m and 57 m
\square Min. dispersion of 2.9 m and maximum of 7.5 m

Arc and straight section

- Dispersion suppression with 2 extra quad families in the last arc modules
- Last arc quad. shared between arc and straight

- Straight section with horizontal phase advance of 87.5°
- Straight section drift of 10.2 m
- Only two families of quadrupoles are used
- Extra two families can be added for extra internal phase adjustments Perfectly matched to the arc
\square Three types of $8(+2)$ quadrupole families (max. strength of $0.1 \mathrm{~m}^{-2}$) for a length of 1346.4 m

The NMC ring II

\square Chromaticities of -21.5,
-32.2

Chromaticity correction

- Sextupoles of 0.4 m long placed in the low beta doublet
- In principle 2 families needed for chromaticity correction
- Second-order chromaticity and offmomentum β-beating not corrected

$\delta \mathrm{p} / \mathrm{p}=0.5 \%$
D. $(m), D_{x x}$

Next steps

- Optimise and correct chromaticity in NMC ring I (module with dispersion suppressor)
- Optimise sextupole strength and working point for good dynamic aperture
- Introduce non-linear correction schemes

