CARE-HHH-APD BEAM'07

Optics considerations for PS2

W. Bartmann, M. Benedikt, C. Carli, B. Goddard, S. Hancock, J.M. Jowett, A. Koschik, Y. Papaphilippou

October 4 ${ }^{\text {th }}, 2007$

Outline

- Motivation and design constraints for PS2
- FODO lattice
- Doublet/Triplet
- Flexible (Negative) Momentum Compaction modules
\square High-filling factor design
\square Tunability and optics' parameter scan
- PS2-SPS transfer line optics design
- Summary and perspectives

Motivation - LHC injectors' upgrade

- Upgrade injector complex.
\square Higher injection energy in the SPS $=>$ better SPS performance
\square Higher reliability

(LP)SPL: (Low Power) Superconducting Proton Linac (4-5 GeV)
PS2: High Energy PS
(~ 5 to $50 \mathrm{GeV}-0.3 \mathrm{~Hz}$)
SPS+: Superconducting SPS
(50 to 1000 GeV)
SLHC: "Super-luminosity" LHC (up to $10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$) DLHC: "Double energy" LHC (1 to $\sim 14 \mathrm{TeV}$)

Design and optics constraints for PS2 ring

- Replace the ageing PS and improve options for physics
- Integration in existing CERN accelerator complex
- Versatile machine:
\square Many different beams and bunch patterns
\square Protons and ions

Basic beam parameters	PS2
Injection kinetic energy $[\mathrm{GeV}]$	
Extraction kinetic energy $[\mathrm{GeV}]$	~ 50
Circumference $[\mathrm{m}]$	1346
Transition energy $[\mathrm{GeV}]$	$\sim 10 / 10 \mathrm{i}$
Maximum bending field $[\mathrm{T}]$	1.8
Maximum quadrupole gradient $[\mathrm{T} / \mathrm{m}]$	17
Maximum beta functions $[\mathrm{m}]$	60
Maximum dispersion function $[\mathrm{m}]$	6
Minimum drift space for dipoles $[\mathrm{m}]$	0.5
Minimum drift space for quads $[\mathrm{m}]$	0.8

- Constrained by incoherent space-charge tune-shift (~ 0.2)

Layout

Golf (9 trous)

FODO Lattice

- Conventional Approach:
\square FODO with missing dipole for dispersion suppression in straights
$\square 2$ dipoles per half cell, 2 quadrupole families
\square Phase advance of $88^{\circ}, \gamma_{\text {tr }}$ of 11.4
$\square 7$ cells/straight and 22 cells/arc => in total 58 cells
$\square \mathrm{Q}_{\mathrm{H}, \mathrm{V}}=14.1$-14.9
\square Alternative design with matching section and increased number of quadrupole families

Dispersion suppressor and straight section

Cell length [m]	23.21
Dipole length [m]	3.79
Quadrupole length [m]	1.49
LSS [m]	324.99
Free drift [m]	10.12
\# arc cells	22
\# LSS cells:	7
\# dipoles:	168
\# quadrupoles:	116
\# dipoles/half cell:	2

Extraction

Doublet and Triplet arc cells

- Advantages
\square Long straight sections and small maximum β 's in bending magnets (especially for triplet)
- Disadvantage

High focusing gradients (especially for doublet)

Flexible Momentum Compaction Modules

- Aim at negative momentum compaction
- Similar to and inspired from existing modules (e.g. J-PARC, see also talk by Yu. Senichev)
- First approach (one module made of three FODOs):
\square Match regular FODO to 90° phase advance
\square Reduced central straight section without bends, re-matched to obtain phase advance (close to three times that of the FODO, i.e. 270°)
- Disadvantage: Maximum vertical β above 80 m

FMC modules with high filling factor

- Improve filling factor: four FODO per module
- Dispersion beating excited by "kicks" in bends
- Resonant behavior: total phase advance $<2 \pi$
- Large radii of the dispersion vector produce negative momentum compaction
- High phase advance is necessary

Optics Considerations for PS2

Improving the high filling factor FMC

- The "high-filling" factor arc module
\square Phase advances of $\mathbf{2 8 0}^{\circ}, \mathbf{3 2 0}^{\circ}$ per module
$\square \gamma_{t}$ of $\mathbf{8 . 2 i}$
\square Four families of quads, with max. strength of $0.095 \mathrm{~m}^{-2}$
\square Max. horizontal beta of 67 m and vertical of 43m
\square Min. dispersion of -6 m and maximum of 4 m
\square Chromaticities of -1.96,-1.14
\square Total length of 96.2 m
- Slightly high horizontal β and particularly long module, leaving very little space for dispersion suppressors and/or long straight sections

Alternative FMC module

- 1 FODO cell with $4+4$ bends and an asymmetric low-beta triplet
\square Phase advances of $\mathbf{3 2 0}{ }^{\circ}, \mathbf{3 2 0}{ }^{\circ}$ per module
$\square \gamma_{t}$ of 6.2 i
\square Five families of quads, with max. strength of $\mathbf{0 . 1} \mathrm{m}^{-2}$
\square Max. beta of 58 m in both planes
\square Min. dispersion of $\mathbf{- 8 m}$ and maximum of 6 m
\square Chromaticities of -1.6,-1.3
\square Total length of 90.56 m
■ Fifth quad family not entirely necessary
■ Straight section in the middle can control γ_{t}
- Phase advance tunable between 240° and 330°

- Main disadvantage the length of the module, giving an arc of around 560 m (5 modules + dispersion suppressors), versus 510m for the FODO cell arc

The "short" FMC module

■ Remove middle straight section and reduce the number of dipoles

- 1 asymmetric FODO cell with $4+2$ bends and a low-beta doublet
\square Phase advances of $\mathbf{2 8 0 , 2 6 0}{ }^{\circ}$ per module
$\square \gamma_{t}$ of 9.4 i
\square Five families of quads, with max. strength of $\mathbf{0 . 1} \mathbf{m}^{-2}$
\square Max. beta of around 60 m in both planes
\square Min. dispersion of $\mathbf{- 2 . 5 m}$ and maximum of 5 m
\square Chromaticities of -1.1,-1.7
\square Total length of $\mathbf{7 2 . 8 4 m}$

■ Phase advance tunable between 240° and 420° in the horizontal and between $\mathbf{2 5 0}^{\circ}$ and $\mathbf{3 2 0}{ }^{\circ}$ in the vertical plane

Transition energy versus horizontal phase advance

Dispersion versus transition energy

- Almost linear dependence of momentum compaction with dispersion min/max values
- Higher dispersion variation for γ_{t} closer to 0
- Smaller dispersion variation for higher γ_{t}

Transition energy versus chromaticity

- Higher in absolute horizontal chromaticities for smaller transition energies
- Vertical chromaticities between -1.8 and -2 (depending on vertical phase advance)
- Main challenge: design of dispersion suppressor and matching to straights

PS2 - SPS Transfer Line design goals

- Keep it short!
- Matched optics $\left(\beta, \alpha, \boldsymbol{D}, \boldsymbol{D}^{\prime}\right)$ at both ends (PS2, SPS)
\Rightarrow Get dispersion under control!

	$\mathbf{L}_{\text {cell }}[\mathrm{m}]$	$\boldsymbol{\beta}_{\max }[\mathrm{m}]$	$\boldsymbol{\beta}_{\min }[\mathrm{m}]$
SPS	64	110	19
PS2	25.89	45	8

- Match space/geometry requirements (Transfer Line defines location of PS2)
$\square 15 \mathrm{~m}$ separation between TT10/TI2 and PS2 beam axis and same between PS2 and any other beam axis
\rightarrow Length limits for TT12 + tight geometry constraints!!!

- Use normal conducting NC (dipole, quadrupole) magnets
- Low $\boldsymbol{\beta}$ insertion for ion stripping
- Emittance exchange scheme
- Branch-off to experimental areas

■ No need for vertical bends,

PS2 - SPS Transfer Line optics

- Matching section (with low- β insertion) near SPS
- 2 bending sections (opposite direction) as achromats ($D=D^{\prime}=0$ at each end)

SPS injection Matching

Summary

■ Different lattice types for PS2 optics investigated
\square FODO type lattice a straightforward solution
\square FMC lattice possible alternative

- no transition crossing
- challenge: matching to straights with zero dispersion
- Perspectives:
\square Complete the lattice design including chromaticity correction and dynamic aperture evaluation
\square Detailed comparison based on performance with respect to beam losses
- Collimation system
- Non-linear dynamics
- Collective effects

