

CARE-HHH-APD BEAM'07

W. Bartmann, M. Benedikt, C. Carli, B. Goddard, S. Hancock, J.M. Jowett, A. Koschik, <u>Y. Papaphilippou</u>

October 4th, 2007

Outline

- Motivation and design constraints for PS2FODO lattice
- Doublet/Triplet
- Flexible (Negative) Momentum Compaction modules
 - High-filling factor design
 - □ Tunability and optics' parameter scan
- PS2-SPS transfer line optics design
- Summary and perspectives

Motivation – LHC injectors' upgrade

Upgrade injector complex.

- □ Higher injection energy in the SPS => better SPS performance
- □ Higher reliability

R. Garoby, BEAM' 07

Design and optics constraints for PS2 ring

- Replace the ageing PS and improve options for physics
- Integration in existing CERN accelerator complex
- Versatile machine:
 - □ Many different beams and bunch patterns
 - Protons and ions

Basic beam parametersPS2Injection kinetic energy [GeV]4Extraction kinetic energy [GeV]~50Circumference [m]1346Transition energy [GeV]~10/10iMaximum bending field [T]1.8Maximum quadrupole gradient [T/m]17Maximum beta functions [m]60Maximum dispersion function [m]6Minimum drift space for dipoles [m]0.5Minimum drift space for quads [m]0.8		1 tune-shift (~0.2)		
Injection kinetic energy [GeV]4Improve SPS performanceExtraction kinetic energy [GeV]~50Analysis of possible bunch patterns: CPS2 = (15/77) CSPSCircumference [m]1346Longitudinal aspectsTransition energy [GeV]~10/10iLongitudinal aspectsMaximum bending field [T]1.8Normal conducting magnetsMaximum quadrupole gradient [T/m]17Aperture considerations for high intensity SPS physics beamMaximum dispersion function [m]60Space considerationsMinimum drift space for quads [m]0.8Space considerations	Basic beam parameters	PS2		
Extraction kinetic energy [GeV] ~ 50 Analysis of possible bunch patterns: $C_{PS2} = (15/77) C_{SPS}$ Circumference [m]1346Longitudinal aspectsTransition energy [GeV] $\sim 10/10i$ Longitudinal aspectsMaximum bending field [T]1.8Normal conducting magnetsMaximum quadrupole gradient [T/m]17Aperture considerations for high intensity SPS physics beamMaximum dispersion function [m]60Space considerationsMinimum drift space for dipoles [m]0.5Space considerationsMinimum drift space for quads [m]0.8Space considerations	Injection kinetic energy [GeV]	4	Improve SPS performance	
Circumference [m]1346 $C_{PS2} = (15/77) C_{SPS}$ Transition energy [GeV]~10/10iLongitudinal aspectsMaximum bending field [T]1.8Normal conducting magnetsMaximum quadrupole gradient [T/m]17Normal conducting magnetsMaximum beta functions [m]60Aperture considerations for high intensity SPS physics beamMinimum drift space for dipoles [m]0.5Space considerationsMinimum drift space for quads [m]0.8Space considerations	Extraction kinetic energy [GeV]	~ 50	Analysis of possible bunch patterns:	
Transition energy [GeV]~10/10iLongitudinal aspectsMaximum bending field [T]1.8Normal conducting magnetsMaximum quadrupole gradient [T/m]17Normal conducting magnetsMaximum beta functions [m]60Aperture considerations for high intensity SPS physics beamMaximum dispersion function [m]6Space considerationsMinimum drift space for dipoles [m]0.5Space considerationsMinimum drift space for quads [m]0.8Space considerations	Circumference [m]	1346	$C_{PS2} = (15/77) C_{SPS}$	
Maximum bending field [T]1.8Maximum quadrupole gradient [T/m]17Maximum beta functions [m]60Maximum dispersion function [m]6Minimum drift space for dipoles [m]0.5Minimum drift space for quads [m]0.8	Transition energy [GeV]	~10/10i	Longitudinal aspects	
Maximum quadrupole gradient [T/m]17Maximum beta functions [m]60Maximum dispersion function [m]6Minimum drift space for dipoles [m]0.5Minimum drift space for quads [m]0.8	Maximum bending field [T]	1.8	Normal conducting magnets	
Maximum beta functions [m]60Aperture considerations for high intensity SPS physics beamMaximum dispersion function [m]6-Minimum drift space for dipoles [m]0.5-Minimum drift space for quads [m]0.8-	Maximum quadrupole gradient [T/m]	17		
Maximum dispersion function [m]6intensity SPS physics beamMinimum drift space for dipoles [m]0.5Space considerationsMinimum drift space for quads [m]0.8For the space considerations	Maximum beta functions [m]	60	Aperture considerations for high	
Minimum drift space for dipoles [m]0.5Space considerationsMinimum drift space for quads [m]0.8	Maximum dispersion function [m]	6	intensity SPS physics beam	
Minimum drift space for quads [m] 0.8	Minimum drift space for dipoles [m]	0.5	Space considerations	
	Minimum drift space for quads [m]	0.8		

Constrained by incoherent space-charge

Layout PM18 Golf (9 trous) PS2 40 まぎ Tunnel LHC Racetrack: PS SPI Integration into existing/planned complex: Beam injected from SPL Short transfer to SPS 150 Ions from existing complex All transfer channels in one straight Linac4 Minimum number of D suppressors High bending filling factor Required to reach 50GeV Zone d'implantation des bât Zone d'extension EURISOLD

FODO Lattice

- Conventional Approach:
 - FODO with missing dipole for dispersion suppression in straights
 - 2 dipoles per half cell, 2 quadrupole families
 - \Box Phase advance of **88°**, γ_{tr} of **11.4**
 - □ 7 cells/straight and 22 cells/arc => in total 58 cells
 - □ Q_{H,V} = **14.1-14.9**
 - Alternative design with matching section and increased number of quadrupole families

Y.P. - 4/10/2007

7

Optics Considerations for PS2

Doublet and Triplet arc cells

Advantages

 \square Long straight sections and small maximum β 's in bending magnets (especially for triplet)

Disadvantage

□ High focusing gradients (especially for doublet)

Flexible Momentum Compaction Modules

- Aim at negative momentum compaction
- Similar to and inspired from existing modules (e.g. J-PARC, see also talk by Yu. Senichev)
- First approach (one module made of three FODOs):
 - □ Match regular FODO to 90° phase advance
 - □ Reduced central straight section without bends, re-matched to obtain phase advance (close to three times that of the FODO, i.e. 270°)
- Disadvantage: Maximum vertical β above 80m

FMC modules with high filling factor

- Improve filling factor: four FODO per module
- Dispersion beating excited by "kicks" in bends
- Resonant behavior: total phase advance < 2π
- Large radii of the dispersion vector produce negative momentum compaction
- High phase advance is necessary

Y.P. - 4/10/2007

Improving the high filling factor FMC

 $\Im_{k}(m),\ \beta_{y}(m)$

- The "high-filling" factor arc module
 - Phase advances of 280°,320° per module
 - $\Box \overline{\gamma_t}$ of **8.2i**
 - □ Four families of quads, with max. strength of **0.095m**⁻²
 - Max. horizontal beta of 67m and vertical of 43m
 - Min. dispersion of -6m and maximum of 4m
 - Chromaticities of -1.96,-1.14
 - □ Total length of 96.2m
- Slightly high horizontal β and particularly long module, leaving very little space for dispersion suppressors and/or long straight sections

 Reduce further the transition energy by moving bends towards areas of negative dispersion and shorten the module $Q(m), D_{\rm xx}$

Alternative FMC module

- 1 FODO cell with 4 + 4 bends and an asymmetric low-beta triplet
 - Phase advances of 320°,320° per module
 - $\Box \gamma_t \text{ of } \mathbf{6.2i}$
 - □ Five families of quads, with max. strength of **0.1m⁻²**
 - □ Max. beta of **58m** in both planes
 - Min. dispersion of -8m and maximum of 6m
 - Chromaticities of -1.6,-1.3
 - □ Total length of 90.56m
- Fifth quad family not entirely necessary
- Straight section in the middle can control γ_t
- Phase advance tunable between
 240° and 330°
 Y.P. 4/10/2007
 Optics Columnation

 Main disadvantage the length of the module, giving an arc of around 560m (5 modules + dispersion suppressors), versus 510m for the FODO cell arc

 \mathfrak{Z}_{k} (m), \mathfrak{Z}_{k} (m)

The "short" FMC module

 $\beta_{v}(m)$

- Remove middle straight section and reduce the number of dipoles
- 1 asymmetric FODO cell with $\hat{\underline{t}}$ 4 + 2 bends and a low-beta doublet
 - Phase advances of 280,260° per module
 - $\Box \gamma_t \text{ of } \textbf{9.4i}$
 - □ Five families of quads, with max. strength of **0.1m⁻²**
 - Max. beta of around 60m in both planes
 - □ Min. dispersion of **-2.5m** and maximum of **5m**
 - Chromaticities of -1.1,-1.7
 - □ Total length of **72.84m**

 Considering an arc of 6 modules + 2 dispersion suppressors of similar length, the total length of the arc is around 510m

Y.P. - 4/10/2007

Optics Considerations for PS2

Dispersion versus transition energy

- Almost linear dependence of momentum compaction with dispersion min/max values
- Higher dispersion variation for γ_t closer to 0
- Smaller dispersion variation for higher γ_t
 Y.P. 4/10/2007 Optics Considerations for PS2

Transition energy versus chromaticity 30 horizontal vertical 20 10 γ_t 0 -10 imaginary -20 -30 -3 -2.5 -2 -1.5 -1 **Chromaticity**

Higher in absolute horizontal chromaticities for smaller transition energies

Vertical chromaticities between -1.8 and -2 (depending on vertical phase advance)

 Main challenge: design of dispersion suppressor and matching to straights Y.P. - 4/10/2007 Optics Considerations for PS2

PS2 – SPS Transfer Line design goals

- Keep it **short!**
- Matched optics (β, α, D, D) at both ends (PS2, SPS)
 - → Get dispersion under control!

	$\mathbf{L}_{\text{cell}}[\text{m}]$	$\beta_{max}[m]$	$\beta_{\min}[m]$
SPS	64	110	19
PS2	25.89	45	8

- Match space/geometry requirements (Transfer Line defines location of PS2)
 - 15m separation between TT10/TI2 and PS2 beam axis and same between PS2 and any other beam axis
 - Length limits for TT12 + tight geometry constraints!!!

- Use normal conducting NC (dipole, quadrupole) magnets
- **Low β** insertion for ion stripping
- **Emittance exchange** scheme
- Branch-off to experimental areas
- No need for vertical bends,

Summary

- Different lattice types for PS2 optics investigated
 FODO type lattice a straightforward solution
 FMC lattice possible alternative
 - no transition crossing
 - challenge: matching to straights with zero dispersion
- Perspectives:
 - Complete the lattice design including chromaticity correction and dynamic aperture evaluation
 - Detailed comparison based on performance with respect to beam losses
 - Collimation system
 - Non-linear dynamics
 - Collective effects