LHC Commissoning $\mathbf{W}_{\text {otring }} \mathbf{G}_{\text {roup }}$

Thanks to R. Assmann, R. Bailey, O. Brüning, S. Fartoukh, M. Giovannozzi, B. Jeanneret, J. Jowett, L. Ponce, S. Redaelli, G. Robert Demolaise, J. Wenninger, F. Zimmermann

September 20th, 2006

Guidelines and suggestions (from R. Bailey and F.zimmermann)

■ What do we need to measure?
\square Apertures across individual IRs and exploration of local aperture bottlenecks \longrightarrow mostly covered by previous LHCCWG presentation

- Expected aperture bottlenecks, identification and correction
\square Setting of tertiary collimators \longrightarrow covered by collimation team
\square Commissioning of separation bumps and eventually crossing angle
- Description of crossing schemes (separation bumps, crossing angles)
- Experimental magnet effects and correction

■ Available facilities needed
\square Orbit correctors (calibration)
\square Diagnostics (BPMs, BLMs, BCTs)
\square Application software
■ Measurement and correction methods
\square Crossing scheme commissioning procedure

- Beam conditions
- Orbit measurement resolution and correction accuracy
- Who will do it and how long will it take?

LHC experimental IRs

Layout of IR1 and IR5

- Identical layouts and optics in both IRs.
\square Exceptions: Crossing scheme, tunnel slope, beam screen orientation \qquad different cryostats
■ Super-conducting low beta triplets (Q1-Q3)
■ One warm, 6-module (D1-MBXW) and one cold single-module (D2-MBRC) separation-recombination dipole
■ 4 matching quads (Q4-Q7) + 4 dispersion suppressor quads (Q8-Q11)
■ Experimental solenoids in both ATLAS and CMS
■ 2 absorbers in front of triplet (TAS) and D2 (TAN)
■ Mirror symmetry around IP apart Q8-Q10 (0.5 m closer to IP on right side)

■ Includes injection elements for beam 1 (left side) and heavy ion experiment ALICE
■ Super-conducting in low beta triplets (Q1-Q3), and dispersion suppressor quads (Q8Q11), as in IR1/5
■ Two cold single-module separation-recombination dipoles (D1-MBX, D2-MBRC)
■ Four 2-module matching quads (Q4-Q7)

- Experimental dipole (MBAW) with 3 warm compensator magnets and solenoid
- Absorber TDI and TCDD for injection failure protection in front of D1L

■ Injection septum MSI between Q5L-Q6L and injection kicker MKI between Q5L-Q4L
■ Mirror symmetry around IP apart Q8-Q10 (0.5 m closer to IP on right side)

Layout of IR8

■ Includes injection elements for beam 2 (right side) and LHCb experiment
■ Super-conducting quads and separation-recombination dipoles, as in IR2
■ Experimental dipole (MBLW) with 3 warm compensator magnets

- Absorber TDI and TCDD for injection failure protection in front of D1R

■ Injection septum MSI between Q5R-Q6R and injection kicker MKI between Q5R-Q4R
■ IP8 shift of 11.25 m implies non-symmetric magnet layout in matching section (apart from Q8-Q10 which are also 0.5 m closer to IP as for other IRs)

IR1/5 injection optics

(S. Fartoukh, LTC 31/03/04)

- $\beta^{*}=17 \mathrm{~m}$
- $\left(\mu_{\mathrm{x}}, \mu_{\mathrm{y}}\right)=2 \pi(2.618,2.644)$
- $\beta_{\text {max }} \sim 300 \mathrm{~m}$ around Q5 (MQML)
- $D_{\text {max }} \sim 2.1 \mathrm{~m}$ around Q 10 (MQML)
- Small vertical dispersion due to vertical separation bump (IR5) or crossing angle (IR1)
- Matching uses all quads from Q11L-Q11R and the MQT12-13

- Horizontal/Vertical parallel separation bump $\pm 2.5 \mathrm{~mm}$ (13.7б) in IR1/5
- Vertical/Horizontal crossing angle of $\pm 160 \mu \mathrm{rad}$ in IR1/5 to reduce long range beam beam encounters
\square Not needed for 43 bunches operation (stage I), but experience should be gained early enough
- The sign of the vertical crossing angle (IR1) and separation bump (IR5) are arbitrary
- The sign of horizontal crossing angle (beam 1 in IR5) and separation bump (beam2 in IR1) must be positive, due to ring geometry

Steerers for crossing scheme in IR1/5

Separation bump			
IR1		IR5	
Beam 1	Beam 2	Beam 1	Beam 2
MCBCH.6L1	MCBCH.5L1	MCBCV.5L5	MCBCV.6L5
MCBYH.B4L1	MCBYH.4L1	MCBYV.4L5	MCBYV.B4L5
MCBYH.A4L1	MCBXA.3L1	MCBXA.3L5	MCBYV.A4L5
MCBXA.3L1	MCBX.2L1	MCBX.2L5	MCBXA.3L5
MCBX.2L1	MCBX.1L1	MCBX.1L5	MCBX.2L5
MCBX.1L1	MCBX.1R1	MCBX.1R5	MCBX.1L5
MCBX.1R1	MCBX.2R1	MCBX.2R5	MCBX.1R5
MCBX.2R1	MCBXA.3R1	MCBXA.3R5	MCBX.2R5
MCBXA.3R1	MCBYH.A4R1	MCBYV.A4R5	MCBXA.3R5
MCBYH.4R1	MCBYH.B4R1	MCBYV.B4R5	MCBYV.4R5
MCBCH.5R1	MCBCH.6R1	MCBCV.6R5	MCBCV.5R5

CrOSSing angle			
IR1		IR5	
Beam 1	Beam 2	Beam 1	Beam 2
MCBCV.5L1	MCBCV.6L1	MCBCV.5L5	MCBCV.6L5
MCBYV.4L1	MCBYV.B4L1	MCBYV.4L5	MCBYV.B4L5
MCBXA.3L1	MCBYV.A4L1	MCBXA.3L5	MCBYV.A4L5
MCBX.2L1	MCBXA.3L1	MCBX.2L5	MCBXA.3L5
MCBX.1L1	MCBX.2L1	MCBX.1L5	MCBX.2L5
MCBX.1R1	MCBX.1L1	MCBX.1R5	MCBX.1L5
MCBX.2R1	MCBX.1R1	MCBX.2R5	MCBX.1R5
MCBXA.3R1	MCBX.2R1	MCBXA.3R5	MCBX.2R5
MCBYV.A4R1	MCBXA.3R1	MCBYV.A4R5	MCBXA.3R5
MCBYV.B4R1	MCBYV.4R1	MCBYV.B4R5	MCBYV.4R5
MCBCV.6R1	MCBCV.5R1	MCBCV.6R5	MCBCV.5R5

- $11+11$ steerers per beam and IR
\square MCBX. 2 and MCBX. 3 are used for orbit correction, the rest for the crossing scheme
■ Same steerers used per beam and IR but different purpose (separation - crossing)
- Both signs of the vertical separation bump (IR5) and crossing angle (IR1) should be commissioned
- Calibration of all these elements with beam is necessary

IR2 Injection optics
 (O. Brüning et al. LHC Project rep 367)

$\square \beta^{*}=10 \mathrm{~m}$, vertical crossing angle of $\pm 150 \mu \mathrm{rad}$ and horizontal parallel separation of $\pm 2 \mathrm{~mm}$
\square External angle of $\pm 80 \mu \mathrm{rad}$ for reducing the long range beam-beam effect
\square Internal angle of $\pm 70 \mu \mathrm{rad}$ for compensating spectrometer orbit distortion

Beam 2

\square Horizontal separation positive for Beam 1 and negative for Beam 2
$\underset{\text { 20/09/2006 }}{\square}$ Angle sign can be chosen arbitrarily (following spectrometer polarity)

IR8 Iniection optics

s(m) [*10** (3)]

Momentum offset $=0.00 \%$

 spectrometer orbit distortion
\square Horizontal crossing angle always negative for Beam 1 and positive for Beam 2
\square Vertical separation sign can be chosen arbitrarily

IR1/5 aperture

- A few locations are below the specification for QF of 7σ
■ Note that for QD the spec is 6.7σ
- Magnets are shifted when installed in order to increase acceptance
- Alignment data can be included in model
M. Giovannozzi, AB/ABP

IR1/5	
Beam 1	Beam 2
MQ.11L	MQ.11L
MQTLI.11L	MB.A11L
MS.11L	MQML.10L
MCBV.11L	MB.B10L
MQML.5R	MQML.5L
MQML.10R	MQML.10R
MB.A11R	MB.A11R
	MQ.11R
	MQTLI.11R
	MS.11R
	MCBV.11R

IR Beam Position Monitors

■ $12+12$ beam position monitors in either side of the IRs
$\square 5+5$ standard 24mm buttons (BPM), near Q7-Q11
$\square 2+2$ for magnets with vertical beam screen (BPMR), near Q5-Q6
$\square 1+1$ enlarged aperture (34mm) buttons with horizont al beam screen (BPMYA), near Q4
$1+1$ enlarged (34mm) warm buttons (BPMWB), near D2$1+1$ directional stripline couplers (120 mm) for DFBX (BPMSY)
$\square 1+1$ directional stripline couplers (120 mm) for Q2 (BPMS)
$\square 1+1$ directional stripline couplers (120mm) for Q1 (BPMSW)
■ PerformanceRange of operation: $\pm 6 \mathrm{~mm}$Non-linearity: $\pm 100 \mu \mathrm{~m}$Resolution:
■ Pilot (5×10^{9}): $130 \mu \mathrm{~m}$ (single), $9 \mu \mathrm{~m}$ (average/224 turns)
■ Nominal - ultimate (1-1.7×1011) $50 \mu \mathrm{~m}$ (single), $5 \mu \mathrm{~m}$ (average/224 turns)

B. Dehning AB/BI, L. Ponce, AB/OP

Location	IC	SEM	Patch	Location	IC	SEM	Patch
TAS.1L1	1	1	BJBAP.A1L1	TAS.1R1	1	1	BJBAP.A1R1
BPMSW.1L1	1	1		BPMSW.1R1	1	1	
MQXA.1L1	6		BJBAP.B1L1	MQXA.1R1	6		BJBAP.B1R1
MQXB.A2L1	6		BJBAP.A2L1	MQXB.A2R1	6		BJBAP.A2R1
MQXA.3L1	6		BJBAP.A3L1	MQXA.3R1	6		BJBAP.A3R1
TAN.4L1	1	1	BJBAP.A4L1	TAN.4R1	1	1	BJBAP.A4R1
TCTV.4L1.B1	1	1		TCTV.4R1.B2	1	1	
TCTH.4L1.B1	1	1		TCTH.4R1.B2	1	1	
TCL.4L1.B2	1	1		TCLP.4R1.B1	1	1	
MQY.4L1	6		BJBAP.B4L1	MQY.4R1	6		BJBAP.B4R1
TCL.5L1.B2	1	1	BJBAP.A5L1	TCL.5R1.B1	1	1	BJBAP.A5R1
MQML.5L1	6			MQML.5R1	6		
MQML.6L1	6		BJBAP.A6L1	MQML.6R1	6		BJBAP.A6R1
XRP.A7L1	2		BJBAP.A7L1	XRP.A7R1	2		BJBAP.A7R1
XRP.B7L1	2			XRP.B7R1	2		
MQM.A7L1	6		BJBAP.B7L1	MQM.A7R1	6		BJBAP.B7R1
MBA.8L1	6		BJBAP.A8L1	MBA.8R1	6		BJBAP.A8R1
MQML.8L1	6		BJBAP.B8L1	MQML.8R1	6		BJBAP.B8R1
MQM.9L1	6		BJBAP.A9L1	MQM.9R1	6		BJBAP.A9R1
MBA.10L1	2		BJBAP.A10L1	MBA.10R1	2		BJBAP.A10R1
MQML. 10L1	6		BJBAP.B10L1	MQML. 10R1	6		BJBAP.B10R1
MBA.11L1	6		BJBAP.A11L1	MBA.11R1	6		BJBAP.A11R1
MQ.11L1	6		BJBAP.B11L1	MQ. 11 R 1	6		BJBAP.B11R1

IR Beam loss monitors

- 6 ionisation chambers (IS) per cryostat, 2 IS close to roman pots
- Secondary emission monitors added in special locations (collimators, injection kickers,...)
- Dynamic range @ 450 GeV

	$\begin{aligned} & 2.5 \mathrm{~ms} \text { (BLMA) } \\ & 0.1 \mathrm{~ms} \text { (BLMS) } \end{aligned}$		1 s		10s		100s	
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
450 GeV	$\begin{gathered} 6 \times 10^{10} \\ \text { (C) } \\ \hline \end{gathered}$	$\begin{gathered} 3.6 \times 10^{12} \\ (\mathrm{~A}) \end{gathered}$	$\begin{gathered} 1.3 \times 10^{9} \\ \text { (D) } \end{gathered}$		$\begin{gathered} 8 \times 10^{5} \\ (\mathrm{E}) \end{gathered}$	$\begin{gathered} 9.6 \times 10^{9} \\ \text { (B) } \end{gathered}$	$\begin{gathered} 2 \times 10^{5} \\ (\mathrm{~F}) \end{gathered}$	

B.Jeanneret, H. Burkhardt, EDMS no. 328146

- Pilot bunch losses can be detected for relatively long integration times ~ 1 sec
- Intermediated bunches of $3 \times 10^{10} \mathrm{p}$ can be detected in $\sim 10-100 \mathrm{msec}$
- For fast response ($<2.5 \mathrm{~ms}$), more than $6 \times 10^{10} \mathrm{p}$ needed

Beam current transformers

- DC beam transformers (BCTDC)
$\square 2$ instruments per ring, for redundancy, located in IR4
\square Resolution of $\sim 10 \mu \mathrm{~A}$ when integrating over 20 ms , equivalent to $1.2 \times 10^{12} \mathrm{p}$, or loss rate of $6 \times 10^{10} \mathrm{p} / \mathrm{ms} \longrightarrow$ just capable of detecting fast nominal bunch losses but with slow response time (40ms)
$\square 20 \%$ resolution for pilot bunches
\longrightarrow not sufficient
■ The alternative are fast BCT
$\square 2$ transformers per ring, for redundancy, located on either side of IR4
\square Capable of resolving bunch by bunch current variation
$\square 5-10 \%$ measurement precision for the pilot bunch (1\% for averaging over 20 ms)

Measurem ent Mode	Beam type	Accuracy/ Resolution	Fast BCT (BCTFR)	DC BCT (BCTDC)
Injection	Pilot bunch	$\pm 20 \% / \pm 20 \%$	$\begin{aligned} & \pm 10^{9} \\ & \text { (OK) } \end{aligned}$	N/A
	Nominal bunch	$\pm 3 \% / \pm 1 \%$	$\begin{gathered} \pm 3 \cdot 10^{9} / \pm 10^{9} \\ (\text { OK }) \end{gathered}$	N/A
$\begin{aligned} & \text { Circulating } \\ & \text { Beam } \\ & \text { (>200 turns) } \end{aligned}$	Pilot bunch	$\pm 10 \% / \pm 10 \%$	$\begin{gathered} \pm 0.5 \cdot 10^{9} \\ (\mathrm{OK}) \end{gathered}$	$\begin{gathered} 1 \mu \mathrm{~A}(\text { on } 10 \mu \mathrm{~A}) \\ \text { (resolution } \sim 2-10 \mu \mathrm{~A}) \end{gathered}$
	Nominal bunch	$\pm 1 \% / \pm 1 \%$	$\begin{aligned} & \pm 10^{9} \\ & \text { (OK) } \end{aligned}$	$\begin{gathered} 2 \mu \mathrm{~A}(\text { on } 180 \mu \mathrm{~A}) \\ \text { (limit for short int time) } \end{gathered}$
	43 pilot bunches	$\pm 1 \% / \pm 1 \%$	$\begin{aligned} & \pm 10^{9} \\ & \text { (OK) } \\ & \hline \end{aligned}$	$\begin{gathered} 2 \mu \mathrm{~A}(\text { on } 390 \mu \mathrm{~A}) \\ \text { (limit for short int time) } \end{gathered}$
Lifetime	Pilot bunch	10\% (10hrs/1min)	(OK)	N/A
	Nominal bunch	$\begin{gathered} 10 \% \\ (30 \mathrm{hrs} / 10 \mathrm{sec}) \end{gathered}$	(OK)	N/A

R.Jones, LHCCWG 25/04/06

Machine conditions and requirements

■ Well corrected and stable closed orbit
■ Measured, stable and possibly well corrected linear optics
■ Measured optics model (response matrix analysis)
\square Well calibrated machine elements (especially steerers, tune/aperture kicker)
■ Stable injected beams with reproducible emittance
■ Beam of around $10^{10} \mathrm{p}$ (or below the quench limit)
■ Calibrated, corrected and well-synchronized BPMs, with turn-by-turn acquisition available
■ Calibrated BLMs
■ Wire scanners and IPMs for profile measurements
■ Cross-calibrated fast BCTs and DC BCTs
■ Application software for control and acquisition of beam positions (TBT, COD modes), losses, profiles, current and lifetime
■ Application software for (sliding) bumps (YASP) and kicker control, synchronized with current/lifetime and beam loss measurements

IR aperture measurements

- Purpose: find and correct major aperture bottlenecks in view of intensity/energy ramping (S. Redaelli, LHCCWG 26/07/06)
- For the IRs, important to identify particular limitations that may become critical at top energy, including crossing scheme and squeeze (triplets)
- Measurement methods
\square Two steerer orbit oscillation (global aperture)
\square Local or sliding closed bumps across IR
\square Note that available aperture (measured in n_{1}) by the model uses specific tolerances for the orbit distortion, optics beating, alignment and mechanical tolerances
\square Data from magnet evaluation activity to machine operation database
\square The comparison with the measured available aperture will depend on the knowledge of these quantities
■ Knowledge of the triplet aperture can be used for the set-up of the tertiary
201092008

Orbit oscillation

■ Create orbit oscillation by two orthogonal correctors (90° apart)
■ Beam has to be centered for each corrector
■ Observe beam loss and correlate it with current drop
■ Need calibrated steerers and knowledge of the optics at these locations

TI8 line aperture measurements, by
B.Goddard, V. Kain, J.Wenninger and R. Schmid, EPAC 2005

Local and sliding bumps

- Scan over the amplitude of a closed bump for a specific location, until a beam loss occurs
\square YASP has the ability of choosing the location of the bump and than calculate the corresponding corrector currents
\square Some cross-calibration of steerers or optics should be possible
■ Slide the bumps along all elements of the IR to establish a complete aperture map
- A lot of refills may be needed and procedure may be quite lengthy

Separation bumps

■ Ideally should follow the aperture measurements for each beam in all IRs, but already experience may be gained during the 450 GeV collisions' run
■ Need a good knowledge of the orbit (work with difference orbits)
■ Step by step increase of the bump amplitude until nominal (pilot beam)
■ At each step measure bump closure (effect in the orbit)

- When bump is vertical (IR5, IR8) repeat procedure for opposite sign and keep the optimal one
- Measure optics (especially dispersion) and aperture with separated beam
- Check validity of the bump with other beam and then inject both beams for final optimisation

ALICE dipole magnet and its compensators

■ 3m-long spectrometer dipole (MBAW) @ 10 m to the right of the IP
■ Vertical deflection with nominal integrated field of 3Tm (deflection of $130 \mu \mathrm{rad}$ @ 7 TeV)
■ The resulting orbit deflection is compensated by three dipole magnets
\square Two 1.5m-long magnets of type MBXWT @ 20m left and right of the IP
\square One 2.6m-long magnet of type MBWMD @ 10 m to the left of the IP

- Two Beam Position Monitors (BPMWS) are located upstream and downstream of the two MBXWT to monitor the internal bump closure

LHCb dipole magnet

■ 1.9m-long spectrometer dipole (MBLW) @ 4.9m to the right of the IP
■ Horizontal deflection with nominal integrated field of 4.2Tm (deflection of $180 \mu \mathrm{rad}$ @ 7 TeV)
■ The resulting orbit deflection is compensated by three dipole magnets
\square Two 0.8 m -long magnets of type MBXWS @ 20m left and right of the IP
\square One 3.4 m -long magnet of type MBXWH @ 5 m to the left of the IP
■ Two Beam Position Monitors (BPMWS) are located upstream and downstream of the two MBXWS to monitor the internal bump closure

Internal crossing angle in IR2 and IR8

■ Can be established independently of the separation bump (in opposite plane, with dedicated compensators)
\square Need a good knowledge of the orbit as before (work with difference orbits)
■ Use pilot bunches and always check induced beam losses
■ Step by step increase of the experimental dipoles' strength, measurement of the orbit deflection in nearby BPM and correction with the compensators, until reaching nominal
■ Repeat procedure for opposite polarity of the experimental magnets
■ Add beam separation and measure optics and aperture
■ Check the bump settings for the other beam and then inject both beams for final optimisation

- Collapse the separation bump and measure luminosity

■ Measure the aperture when dipoles pushed at their collision strength

Nominal injection aperture in IR8

Equipment	$\mathbf{n}_{\mathbf{1}}$ $[\boldsymbol{\sigma}]$	$\mathbf{n}_{\mathbf{1}}$ $[\mathrm{m}]$	\mathbf{n}_{1} $[\%]$
BPMSW.1L8	$\mathbf{2 0}$	$\mathbf{0 . 0 1 4}$	$\mathbf{4 5}$
MBXWS.1L8	$\mathbf{1 6}$	$\mathbf{0 . 0 1 0}$	$\mathbf{4 0}$
MBXWH.1L8	34	0.012	45
IP8	$\mathbf{5 6}$	$\mathbf{0 . 0 1 6}$	$\mathbf{5 2}$
MBLW.1R8	$\mathbf{1 1 1}$	$\mathbf{0 . 0 3 7}$	$\mathbf{5 8}$
MBXWS.1R8	16	$\mathbf{0 . 0 1 0}$	40
BPMSW.1R8	$\mathbf{2 0}$	$\mathbf{0 . 0 1 4}$	$\mathbf{4 5}$

■ Differences with respect to IP2 on the $2^{\text {nd }}$ compensator (smaller β) and spectrometer (smaller β and aperture)
■ Aperture varies for less than 3σ between the scheme with only internal $\underline{\underline{b}}$ and full crossing scheme

- Around $50-60 \%$ of the available aperture is lost for all compensators and 40% for the spectrometer

Internal crossing bump of IR8 with collision

 strength for the spectrometer dipole \cdots sem 1 nom

■ Internal crossing angle of $\pm 2100 \mu \mathrm{rad}$ in the horizontal plane!
■ Deflection of $\pm 0.010 \mathrm{~m}$ at MBXWH, corresponding to 29σ, as compared to $0.0006 \mathrm{~m}(2 \sigma)$ of the nominal bump

Aperture in IR8 with full spectrometer dipole strength

■ When crossing angle is added beam excursion of 0.011 m (33б) at MBXWH, as compared to $0.0004 \mathrm{~m}(6 \sigma)$ for the nominal scheme
■ When polarity and external crossing angle sign are mismatched, two additional crossings occur $\sim 15 \mathrm{~m}$ left and right of the IP (in total 4 crossings)

■ Biggest loss in aperture around MBXWH
■ n_{1} correspond to even smaller values than MBWXS in mm

Aperture loss in IR8 by element

Equipment	\mathbf{n}_{1} nominal $[\sigma]$	\mathbf{n}_{1} full $[\sigma]$	\mathbf{n}_{1} nominal $[\mathrm{m}]$	n_{1} full $[\mathrm{m}]$	n_{1} nominal $[\%]$	n_{1} full $[\%]$
BPMSW.1L8	20	20	0.014	0.014	45	45
MBXWS.1L8	16	16	0.010	0.010	40	40
MBXWH.1L8	34	19	0.012	0.006	45	24
IP8	56	56	0.016	0.015	52	52
MBLW.1R8	111	95	0.037	0.031	58	50
MBXWS.1R8	16	16	0.010	0.010	40	40
BPMSW.1R8	20	20	0.014	0.014	45	45

■ Not important impact in any element apart MBXWH
\square Available aperture of 6 mm (with respect to 12 mm), corresponding to 15σ of aperture loss
\square Remaining aperture corresponds 24% of the available

Aperture loss in IR2 by element

Equipment	n_{1} nominal $[\sigma]$	n_{1} full $[\sigma]$	n_{1} nominal $[\mathrm{m}]$	n_{1} full $[\mathrm{m}]$	n_{1} nominal $[\%]$	n_{1} full $[\%]$
BPMSW.1L2	20	20	0.014	0.014	47	47
MBXWT.1L2	17	17	0.011	0.011	42	42
MBWMD.1L2	33	20	0.014	0.009	47	30
IP2	53	53	0.015	0.015	52	52
MBAW.1R2	221	217	0.093	0.088	62	58
MBXWT.1R2	17	17	0.011	0.011	42	42
BPMSW.1R2	20	20	0.014	0.014	47	47

■ Not important impact in any element apart MBWMD
\square Available aperture of 9 mm (with respect to 14 mm), corresponding to 13σ of aperture loss
\square Remaining aperture is 30% of the available

■ In conclusion:

\square Possible during 450 GeV collision run but not while injecting
\square For 450 GeV injection run the nominal scheme is kept (magnets should be ramped)

External crossing angles

■ Even if external crossing angles are not needed for stage I (43 bunch operation), it would be useful to pre-commission them for facilitating the task in a later stage (already done during 450 GeV collisions' run for IR2 and IR8)

- Certainly not a priority for IR1 and IR5

■ Use one beam at a time, without separation bumps and internal crossing angles
■ Step by step increase of the crossing angle and position measurements, until reaching nominal
■ Switch on the experimental magnet and check effects on orbit, coupling and tune-shift
■ Repeat procedure for opposite sign angle

- Add beam separation, measure optics and aperture and repeat with internal crossing angle, for both compensator polarities
■ Add all three and measure aperture and optics
■ Inject both beams, collapse the separation bump and measure luminosity

ATLAS and CMS experimental solenoids

$\square 5.3 \mathrm{~m}$-long ATLAS solenoid, providing a 2T maximum field
■ 13.2m-long CMS solenoid, providing a 4T maximum field

■ Produce orbit, coupling and focusing
■ Especially CMS solenoid produces a $5 \mu \mathrm{rad}$ vertical deflection ($\sim 0.1 \mathrm{~mm} \mathrm{rms}$ orbit distortion) in the presence of ${ }_{33}$ crossing angle

Other possible measurements with bumps

- Identification of IR triplet errors with 3-bumps around the triplets
■ Measurement of long range beam beam effectsVarying the amplitude of the separation bump for different bunch currents
\square Same approach with the crossing angle for different filling patterns
■ Impedance measurements
\square Sliding bumps of variable amplitude and measurement of the orbit kick induced on the beam for several beam currents
■ Not a priority for this commissioning stage

Time needed and measurement teams

■ Very difficult to foresee and estimate how long each measurement may take as it will depend on

■ Status of the machine
■ Availability and calibration of different equipments
■ Availability of application software for automatic bump setting and position acquisition for a series of machine locations
$■$ Other unexpected problems (aperture bottlenecks, machine protection issues,...)
■ Measurements teams
\square Aperture measurements

- Colleagues from ABP and OP (collimation project)? Others?

■IR Bumps and crossing schemes
\square W. Herr, Y. Papaphilippou F. Zimmermann(ABP), OP, IR optics' responsibles
\square Colleagues from TeVatron and RHIC (LARP)

Summary

■ Overview of IR optics in view of 450 GeV commissioning
\square IR aperture
\square Separation bumps
\square Internal crossing angles in IR2 and IR8
\square External crossing angles
■ Aperture loss was evaluated in IR2 and IR8 when spectrometers are switched to their maximum value (LTC action) for the 450 GeV collision run
\square Follow-up may be needed for specific items
\square Establishing a commissioning procedure for bumps and crossing schemes
\square Application software development for IR bump commissioning

