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Outline
 Particle motion in circular 

accelerators

 Notions of charged particle 
dynamics  and coordinate 
systems

 Guidance and focusing 

 Equations of motion

Multipole field expansion

 Hill’s equations

 Equations of motions in 
linear magnetic fields

 Accelerator magnets 

Magnetic materials

Magnetic potential and 
symmetries

 Transport Matrices 

Matrix formalism

 Drift

 Thin lens approximation

 Quadrupoles

 Dipoles

 Sector magnets

 Rectangular magnets

 Doublet, FODO cell

 Off-momentum particles 

 Effect from dipoles and 
quadrupoles

 Dispersion equation 

 3x3 transfer matrices

Momentum compaction 
and transition energy
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Equation reminder

Lorentz equation with   

p, v: relativistic momentum 

and velocity vectors

F: electromagnetic force vector

E, B: electric and magnetic           

field vectors

q: electric charge

Etot: total energy

T: kinetic energy

m0: rest mass

c: speed of light

β, γ, βγ : reduced velocity, energy and momentum
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Notions of particle beam dynamics
Starting from the definition of the relativistic momentum                   
the particle acceleration is with

giving

Force perpendicular to propagation Force parallel to propagation

In conclusion, parallel acceleration is much more efficient

 Example: Motion in a uniform, constant magnetic field
 Spiraling along the magnetic field with constant energy. Equate 

centrifugal force with Lorentz force to get

from where the radius is

and the frequency 
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 Using Lorentz equation, the change in kinetic energy  (work 

done by the Lorentz force over the path s) is

i.e. electric field is used for accelerating particles

 Lorentz equation for x deviation of particle moving along z

direction 

 For no acceleration

 For relativistic particles,

i.e. magnetic field is used for guiding particles (except 

special cases in very low energies)

Electric and magnetic field

x

y

z

x
y
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Coordinate system
 Cartesian coordinates not useful to describe motion in an 

accelerator

 Instead, a moving coordinate system following an ideal 

path along the accelerator is used (Frenet reference frame)

 The curvature vector is

 From Lorentz equation

Ideal path

Particle trajectory

ρ

x

y

s

x
y

φ

 The ideal path is defined
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Beam guidance
 Consider only a uniform magnetic field B in the direction perpendicular to 

the particle motion. From the ideal trajectory and after considering that the 

transverse velocities vx<< vs,vy<<vs,we have that the radius of curvature is

 The cyclotron or Larmor frequency

 We define the magnetic rigidity

 In more practical units

 For ions with charge multiplicity Z and atomic number A, the energy per 

nucleon is
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Dipoles
 Consider an accelerator ring 

for particles with energy E
with N dipoles of length L

 Bending angle

 Bending radius

 Integrated dipole strength

SNS ring dipole

 Comments: 
 By choosing a dipole field, the dipole 

length is imposed and vice versa

 The higher the field, shorter or smaller 
number of dipoles can be used

 Ring circumference (cost) is 
influenced by the field choice

B

θ ρ

L
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Beam focusing

 Consider a particle in the design orbit.

 In the horizontal plane it performs an harmonic oscillation

with frequency

 The horizontal acceleration is described by 

 There is a week focusing effect in the horizontal plane.

 In the vertical plane, only force is gravitation. The particle 

will be displaced vertically following the usual law 

x

y

s

ρ

design orbit

 Setting g = 10 m/s2, the 

particle will be displaced 

by 18mm (LHC dipole 

aperture) in 60ms (a few 

hundreds of turns in 

LHC)

Need of strong focusing
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 Magnetic element that deflects the beam by an angle proportional to the 
distance from its centre (equivalent to ray optics) provides focusing.

 The deflection angle is defined as , for a lens of focal length f and 
small displacements y.

 A magnetic element with length l and with a gradient g has a field
so that the deflection angle is

Focusing elements

 The normalised focusing strength 

is defined as

 In more practical units, for Z=1

 The focal length becomes    

and the deflection angle is 

y

α

f

focal point

f -1
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Quadrupoles
 Quadrupoles are focusing in one plane and 

defocusing in the other

 The field is

 The resulting force

 Need to alternate focusing and defocusing in order to 

control the beam, i.e. alternating gradient focusing

 From optics we know that a combination of two 

lenses with focal lengths f1 and f2 separated by a 

distance d

 If f1 = -f2, there is a net focusing effect, i.e.

v

F

B

F

B
v
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Rotating coordinate system
 Consider a particle with charge q moving 

in the presence of transverse magnetic 
fields

 Choose cylindrical coordinate system 
(r,φ,y), with r = x+ρ and φ = s/ρ

 The radius vector is 

 For a small displacement dφ

Ideal path

Particle trajectory

ρ

r

y

θ

r
y

φ

R

 Than the velocity is 

 And the acceleration

 Recall that the momentum time derivative is
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Equations of motion
 Setting the electric field to zero and the magnetic field to be transverse

the Lorentz equations become  

 Replacing the momentum with the adequate expression and splitting the 
equations for the r and y direction

 Replace and  as

 The equations of motion in the new coordinates are 
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General equations of motion
 Note that for x<<ρ

 It is convenient to consider the arc length s as the independent variable

and  

 Denote

 The general equations of motion are

 Remarks: 

 Without the approximations, the equations are nonlinear and coupled!

 The fields have to be defined 
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Magnetic multipole expansion
 From Gauss law of magnetostatics, a vector potential exist 

 Assuming a 2D field in x and y, the vector potential has only one 
component As. The Ampere’s law in vacuum (inside the beam pipe) 

 Using the previous equations, the relations between field 
components and potentials are

i.e. Riemann conditions of an analytic function

There exist a complex potential of z = x+iy with a 

power series expansion convergent in a circle with 

radius |z| = rc (distance from iron yoke)

x

y

iron

rc
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Magnetic multipole expansion II

 From the complex potential we can derive the fields

 Setting we have

 Define normalized units 

on a reference radius, 10-4 of the main field to get

 Note: n’=n-1 is the US convention
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Magnet definitions

 2n-pole:

dipole      quadrupole       sextupole        octupole …

n:          1                   2                     3                      4    …               

 Normal: gap appears at the horizontal plane

 Skew: rotate around beam axis by p/2n angle

 Symmetry: rotating around beam axis by p/n angle, the field is 
reversed (polarity flipped)

N

S

N

S

S

N

N

S S

S

N N N

N

N

N

S

S

S

S
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Parameters
 Field needed to bend a particle and force it into a trajectory

BR = Br = p/0.2998 for an electron or a proton when p in GeV

 Particle species and energy define the accelerator

 The first decision in the design of a circular  accelerator is the 
trade-off between tunnel circumference and magnetic field.

 For iron magnets B ≤ 2T

 For B > 2T superconducting technology needed

 Size of the beam and optics define the quadrupole fields. 
Strength usually not as stringent, apart in special areas where 
extremely strong focusing is needed (e.g. interaction regions of 
colliders)

 Field should be linear to the 10-4 level. Transfer function, i.e 
integrated magnet strength divided by the current needs to be 
constant.

mv/q  R B

/RmvB v q  
am)Bvq(F

2







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Magnetic materials
• Reminder: M = χH, B = mH = m0(H+M) = m0 (1+χ) H

• where, M Magnetization, H excitation field, B Magnetic induction, 

m permeability, χ susceptibility

• Most materials present diamagnetism (1+χ>1, i.e. field strengthens) or 
paramagnetism (1+χ<1, i.e. field weakens) . In both cases, the 
magnetization disappears when the external excitation field is zero

• Special materials show ferromagnetism, i.e. minuscule magnetic domains 
exist in the material and get aligned in the presence of a magnetic field.

• Saturation (material cannot absorb stronger magnetic field) is reached 
asymptotically at 0 ºK with no thermal disorder when all the domains are 
aligned. Above the Curie temperature material looses its ferromagnetic 
behavior

m0Msat

[Tesla @ 0 K]

Curie Temp

[ C]

Iron 2.18 770

Nickel 0.64 358

Cobalt 1.81 1120
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Magnetic potential

The Maxwell laws for magnetostatics:

In the absence of currents j=0 and B can be expressed as the 

gradient of a scalar potential

The Laplace equation has a solution in cylindrical coordinates of 

the form:

where an and bn correspond to pure skew and normal components

0 and   B 2  VV

.jH;0B. 

  
n

)sin()cos(  nrbnraV n

n

n

n
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Ideal pole shape

 In iron dominated magnets, the field is determined by the shape 

of the steel poles (lines of constant scalar potential).

 Conductor coils are wounded around the poles to create the 

magnetic field. 

 Due to boundary conditions, pole surfaces are equipotential lines

Dipole (n = 1)

2/:Pole

B

B

),(

sincos ),(

1

1

11

11

dy

b

a

ybxayxV

rbrarV

y

x









 

V

with d the gap size
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Ideal pole shape

Quadrupole (n = 2) Sextupole (n = 3)

2/:Pole

)(2B

)(2B

2)(),(

2sin2cos ),(

2

22

22

2

22

2

2

2

2

2

Rxy

xbya

ybxa

xybyxayxV

rbrarV

y

x









 

32

22

33

3

22

3

32

3

23

3

3

3

3

3

3:Pole

)(36B

6)(3B

)3()3(),(

3sin3cos ),(

Ryyx

yxbxya

xybyxa

yyxbxyxayxV

rbrarV

y

x









 

VV

V V

V

V

V

V

V

V

with R the gap radius
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Magnets with normal symmetries

 Dipole:

only bn with n=1,3,5, etc.

 Quadrupole:

only bn with n=2,6,10, etc.

 Sextupole:

only bn with n=3,9,15, etc.

 In practice poles have a finite 
width

 Impose the same symmetries to 
the pole constrains the 
harmonics

 Longitudinally, the magnet end 
will generate non linear fringe 
fields  shims

 Sharp edges will cause 
saturation and the field becomes 
non linear  chamfered ends

 Numerical methods applied to 
define the shape and machined 
with high precision.














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)2()(

)()(

)2/3()(

)2/()(
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p

p

VV

VV

VV

VV

)2()(

)()(

p

p
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

VV

VV










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








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Dipole current

• B is constant around the loop l and in 
the gap

• According to Ampere’s law

with N the number of turns

• The number of conductors and 
current density can be optimized

• Limited by the iron saturation 

B ≤ 2T

 
A

AdJsdH


d

NI0B
m



NIdl

NIdl

iron

o

gapiron





B
1

B
1

HH

0mmm

d μ »1
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Quadrupole current

• B is perpendicular to ds along path 3 
and within the iron (path 2) μ>>1

• Only non-zero component along path 
1 and using again Ampere’s law

• The gradient G in a quadrupole is 

and after integrating

NIdssdH  
1

1H


2

0

02

r

NI
G

m


r
G

yx
G

GxBGyB yx

0

22

0

1H

;

mm



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Practical problems

 The finite pole width creates errors.

 To compensate, small steps are added 
at the outer ends of each of the pole 
called shims.

 Saturation at the corners at the 
longitudinal end also creates high 
order multipoles

 Chamfering is performed, the size of 
which is estimated using numerical 
calculations

 Eddy currents oppose to the change of 
magnetic field and produce losses

 Eddy currents are minimized by 
transposing the conductors in the coil.

 Eddy currents in the yoke are avoided 
using laminations



P
ri

n
c
ip

le
s
 o

f 
c
h
a
rg

e
d
 p

a
rt

ic
le

 b
e
a
m

 o
p
ti
c
s
, 

J
U

A
S

, 
J
a
n
u
a
ry

 2
0
0
7

28

Example: MQWA quadrupole
 Twin aperture quadrupole for LHC 

built in collaboration with 
TRIUMF by Alstom, CANADA.

 Pole geometry is identical in the 
nose

 Disposition of coils around the 
poles is non symmetric.

 Field calculations require numerical 
methods done with Opera.
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Equations of motion – Linear fields 

 Equations of motion (see slide 15)

 Consider s-dependent fields from                                                                
dipoles and normal quadrupoles

 The total momentum can be written

 The magnetic rigidity and the normalized gradient

 The equations become

 Inhomogeneous equations with s-dependent coefficients

 Note that the term 1/ρ2 corresponds to the week focusing

 The term ΔP/(Pρ) is non-zero for off-momentum particles
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Hill’s equations

 Solutions are a combination of the ones from the                
homogeneous and inhomogeneous equations

 Consider first particles with the design momentum. 
The equations of motion become 

with

Hill’s equations of linear transverse particle motion

 Linear equations with s-dependent coefficients (harmonic 
oscillator with “time” dependent frequency)

 In a ring or in transport line with symmetries, coefficients  are 
periodic

 Not practical to get analytical solutions for all accelerator

George Hill
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Harmonic oscillator – spring

u

u

 Consider K(s) = k0 = constant

 Equations of harmonic oscillator 
with solution

with

for k0 > 0

for k0 < 0

 Note that the solution can be written in matrix form
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 General transfer matrix from s0 to s

 Note that 

which is always true for conservative systems

 Note also that

 The accelerator can be build by a series of matrix multiplications

from s0 to s1

from s0 to s2

from s0 to s3

from s0 to sn

Matrix formalism

…

S0

S1 S2 S3 Sn-1

Sn
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 System with mirror symmetry

Symmetric lines

S

 System with normal symmetry

S
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to get a total 4x4 matrix

4x4 Matrices

 Combine the matrices for each plane

Uncoupled motion
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Transfer matrix of a drift

 Consider a drift (no magnetic elements) of length L=s-s0

 Position changes if particle has a slope which remains unchanged.

0 L

u’

u

u’L

s

L

Real Space Phase Space

Before

After
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u’

u

Focusing - defocusing thin lens

u’

u

0
f

 Consider a lens with focal length f

 Slope diminishes (focusing) or increases (defocusing) 
for positive position, which remains unchanged.

After

Before

0 f

Before

After
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 Consider a quadrupole magnet of length L. The 
field is

with normalized quadrupole gradient (in m-2)

The transport through a quadrupole is

u’

u

Quadrupole

0 L s
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 For a focusing quad (k>0)

 For a defocusing quad (k<0)

 By setting

 Note that the sign of k or f is now absorbed inside the symbol

 In the other plane, focusing becomes defocusing and vice versa

Quadrupole II
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 Consider a dipole of length L. By setting  in the focusing quadrupole matrix

the transfer matrix for a sector dipole becomes

with a bending radius

 In the non-deflecting plane

 This is a hard-edge model. In fact, edge focusing appears in the vertical plane

 Matrix can be generalized by adding strong focusing for synchrotron magnets

Sector Dipole

θ

L
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 Consider a rectangular dipole with bending angle θ. At each edge of length ΔL, 
the deflecting angle is changed by

i.e., it acts as a thin defocusing lens with focal length

 The transfer matrix is with

 For θ<<1, δ=θ/2

 In deflecting plane (like drift)  in non-deflecting plane (like sector)

Rectangular Dipole

θ

ΔL
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Quadrupole doublet

x

L

 Consider a quadrupole doublet, i.e. 
two quadrupoles with focal lengths f1

and f2 separated by a distance L. 

 In thin lens approximation the 
transport matrix is

with the total focal length

 Setting f1 = - f2 = f

 Alternating gradient focusing seems overall focusing 

 This is only valid in thin lens approximation
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FODO Cell

 Consider a defocusing quadrupole 
“sandwiched” by two focusing 
quadrupoles with focal lengths f.

 The symmetric transfer matrix from 
center to center of focusing quads

with the transfer matrices

 The total transfer matrix is

L L
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Effect of dipole on off-momentum particles

 Up to now all particles had the same momentum P0

 What happens for off-momentum particles, i.e. particles with 

momentum P0+ΔP?

 Consider a dipole with field B and 

bending radius ρ

 Recall that the magnetic rigidity  is 

and for off-momentum particles

 Considering the effective length of the dipole  unchanged

 Off-momentum particles get different deflection (different orbit)

θ

P0+ΔP

P0

ρ

ρ+δρ
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 Consider a quadrupole with gradient G

 Recall that the normalized gradient is

and for off-momentum particles

 Off-momentum particle gets different focusing

 This is equivalent to the effect of optical lenses on 
light of different wavelengths

P0+ΔP

P0

Off-momentum particles and quadrupoles
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 Consider the equations of motion for off-momentum particles

 The solution is a sum of the homogeneous equation (on-

momentum) and the inhomogeneous (off-momentum)

 In that way, the equations of motion are split in two parts

 The dispersion function can be defined as

 The dispersion equation is

Dispersion equation
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Dispersion solution for a bend

 Simple solution by considering motion through a sector dipole 

with constant bending radius ρ

 The dispersion equation becomes

 The solution of the homogeneous is harmonic with frequency 

1/ρ

 A particular solution for the inhomogeneous is

and we get by replacing  

 Setting D(0) = D0 and D’(0) = D’0, the solutions for dispersion 

are
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General dispersion solution

 General solution possible with perturbation theory and use of Green functions

 For a general matrix the solution is

 One can verify that this solution indeed satisfies the differential equation of the 

dispersion (and the sector bend)

 The general betatron solutions can 

be obtained by 3X3 transfer 

matrices including dispersion

 Recalling that

and
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 For drifts and quadrupoles which do not create dispersion the 

3x3 transfer matrices are just

 For the deflecting plane of a sector bend we have seen that the 

matrix is

and in the non-deflecting plane is just a drift.

3x3 transfer matrices - Drift, quad and sector bend
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3x3 transfer matrices - Synchrotron magnet

 Synchrotron magnets have focusing and bending included in 

their body. From the solution of the sector bend, by replacing 

1/ρ with K=(1/ρ2 - k)1/2.

 For K>0

 For K<0

with 
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3x3 transfer matrices - Rectangular magnet

 The end field of a rectangular magnet is simply the one of a 

quadrupole. The transfer matrix for the edges is

 The transfer matrix for the body of the magnet is like the sector

 The total transfer matrix is
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Chromatic closed orbit

 Off-momentum particles are not oscillating around design orbit, 

but around chromatic closed orbit 

 Distance from the design orbit depends linearly with momentum 

spread and dispersion 

Design orbit

Design orbit

On-momentum 

particle trajectory

Off-momentum

particle trajectory

Chromatic close orbit
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Momentum compaction

 Off-momentum particles on the dispersion orbit travel in a 

different path length than on-momentum particles

 The change of the path length with respect to the momentum 

spread is called momentum compaction

 The change of circumference is

 So the momentum compaction is

Δθ

P+ΔP

P

ρ

D(s)ΔP/P
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Transition energy

 The revolution frequency of a particle is

 The change in frequency is 

 From the relativistic momentum we have

for which and the revolution frequency

. The transition energy is defined by
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Problems I

1) Consider an electron storage ring with circumference of 850m and energy of 
6GeV. If the maximum bending field available is 0.854T, what is the percentage 
of the circumference occupied by dipoles? With dipoles of 2.3m long, find the 
integrated dipole strength, the bending angle and the number of dipoles. 

2) In the SNS ring, the necessary bending of the proton beam in the arcs is provided 
by 32 dipoles with a 17cm gap and a magnetic length of 1.5m. If the coil is built 
with 20 turns, how much should the power supply current be in order to give the 
necessary field for 1GeV and 1.3 GeV operation. The rest energy of the proton is 
938.273 MeV.

3) Trace the poles of a decapole and dodecapole magnet. What is the angle between 
the centre of each pole in each case? Derive this angle for general 2n-pole 
magnets?

4) Use the expansion of the scalar potential in polar coordinates in order to show that 
the potential is symmetric by a rotation of π. Prove that the first allowed multi-
pole for a normal quadrupole magnet is a 12-pole (b6), the second a 20-pole (b10), 
etc. Is there a general rule for all multi-pole magnets? 
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Problems II

5) Prove that the transfer matrices of two symmetric cells and of one cell with 
mirror symmetry have their determinant equal to 1. Derive the transfer matrix 
of a particle moving in the opposite direction in the two above cases.  

6) Find the focal length of a thin focusing and defocusing quadrupole. To do so, 
consider an incoming parallel beam (in x or in y depending on the quad) and 
propagate it using the quad and a drift, and find the drift length in order to get 0
displacement. Do the same for both planes for a doublet formed by the two 
quads, with distance l between them.

7) Write the transfer matrix of a FODO cell for which the integrated focal length 
is f = 2f and the drift has distance l. For numerical evaluation you will need 
that Bρ = 26.68, the quad length 0.509m the quadrupole gradient 12T/m and 
the distance between quads 6.545m.


