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Outline
 Methods of acceleration
Energy gain and phase stability
Momentum compaction and transition
Equations of motion

Small amplitudes
Longitudinal invariant

Separatrix
Energy acceptance
Stationary bucket
Adiabatic damping
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 Only electric field accelerates particles

 Lorentz equation for x deviation of particle
moving along z direction

 In order to have no acceleration

 For relativistic particles

 Magnetic field is used for guiding particles
(except special cases in very low energies)

Electric and magnetic field
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Direct voltage accelerator
 The simplest accelerator

(vacuum tubes, monitors...)
 Particle source in blue electrode
 Accelerated by electric field in

good vacuum
 Particle exit in red electrode
 Particle energies proportional to

maximum voltage and thus
limited.

 Current components
 Ohmic

 Proportional to voltage
 Residual ion current

 Saturates rapidly
 Corona

 Negligible for small voltages
 Current grows exponentially

for high voltages causing
spark discharge and voltage
breakdown

I

V

Vmax = few MV Corona 
formation

Ion current

OhmicSum
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Electrostatic accelerators
 Particles are accelerated by a constant voltage across a gap
 This acceleration is limited by breakdown voltages even in

the tandem or Van der Graff accelerators
 The energy gain is proportional to the generator voltage,

which becomes the main limitation

  

! 

W = nq Vn" = nqVgen
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Cascade generator
 Problem: generate high voltages to reach high energy
 Cockcroft and Walton (1932) developed generator based

on multiple rectifiers
 Greinacker circuit operating principle

 Transformer with sinusoidal voltage
 2N diodes (current flows in one direction) ensure that max

voltage in every 2 capacitors is 2V0, 4V0, 6V0 ,…,2NV0
 Reach voltage of about 4 MV but only pulsed beam currents

of several hundreds of mA
 Cockcroft and Walton used accelerator to bombard Li

with protons and produce an atomic reaction, giving two
He nuclei (Nobel Prize 1951)

Fermilab cascade generator

Greinacker circuit

   Marx generator (1932) consists of series of resistors and
capacitors,  powered by high voltage Vcharge

   When spark discharge occurs, and as the resistance is very large, N
capacitors powered in series giving total voltage of NVcharge

Marx generator
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Linear accelerators
 Original idea by Ising (1924), first working linac by

Wideröe (1928) and high energy (1.3 MeV) linac by
Sloan and Lawrence (1931)

 Series of drift tubes alternately connected to high (RF)
frequency voltage oscillator

 Particles get accelerated in gap, no effect inside tube (act
like Faraday cage)

 Field reversed and then exit tube to be reaccelerated
until they reach energy

 For constant RF frequency, drift tubes’ length increases
with velocity up to relativistic limit (electrons)

 Synchronization of particle and RF field assured by
phase focusing

 Beams (1933) developed first cavity structure linac
(waveguides). Hansen and Varian brothers (1937)
developed first klystron (frequencies up to 10GHz).

 Alvarez (1946) developed first DTL resonant cavity
structure for protons and heavy ions
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RF acceleration
 The use of RF fields allows an arbitrary number of

accelerating steps in gaps and electrodes fed by RF
generator

 The electric field is not longer continuous but sinusoidal
alternating half periods of acceleration and deceleration

 The synchronism condition for RF period TRF and particle
velocity v

    

! 

L = vT
RF

/2 = "c
#

$
RF

= "%/2
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Energy gain
Assuming a sinusoidal electric field
where the synchronous particle passes at the middle of the
gap g, at time t = 0, the energy is

And the energy gain is

and finally with the transit time

factor defined as

It can be shown that in general

    

! 

"W = qE0 cos(#RF

z

v
)dz

$q/2

g/2

%
    

! 

W (r,t) = q Ezdz" = q E0

#g/2

g/2

" cos($RF

z

v
+ %s )dz

T
2/

2/sin
qVqVW =

!

!
="

    

! 

E
z

= E0 cos("
RF
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s
)

    

! 

T =
sin("g/2v)

"g/2v

    

! 

T =
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g/2

$

E(0,z)dz
#g/2

g/2
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Phase stability
 Assume that a synchronicity condition is fulfilled at the

phase φs and that energy increase produces a velocity
increase

 Around point P1, that arrives earlier (N1) experiences a
smaller accelerating field and slows down

 Particles arriving later (M1) will be accelerated more
 A restoring force that keeps particles oscillating around a

stable phase called the synchronous phase φs
 The opposite happens around point P2 at π-φs, i.e. M2 and N2

will further separate
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RF de-focusing
In order to have stability, the time derivative of the
Voltage and the spatial derivative of the electric field
should satisfy

In the absence of electric charge
the divergence of the field is 
given by Maxwell’s equations

where x represents the generic transverse direction.
External focusing is required by using quadrupoles or
solenoids

      

! 

"
r 
E = 0#

$E
x

$x
+
$E

z

$z
= 0#

$E
x

$x
> 0

    

! 

"V

"t
> 0#

"E

"z
< 0
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Momentum compaction
 Off-momentum particles on the dispersion orbit travel in a

different path length than on-momentum particles
 The change of the path length with respect to the

momentum spread is called momentum compaction

 The change of circumference is

 So the momentum compaction is
Δθ

P+ΔP

P

ρ

D(s)ΔP/P
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Transition energy
 The revolution frequency of a particle is

 The change in frequency is

 From the relativistic momentum          we have

   for which
    
and the revolution frequency

 The slippage factor is given by

For vanishing slippage factor,
the transition energy is defined
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Synchrotron
 Frequency  modulated but

also B-field increased
synchronously to match
energy and keep revolution
radius constant.

 The number of stable
synchronous particles is
equal to the harmonic
number h. They are equally
spaced along the
circumference.

 Each synchronous particle
has the nominal energy and
follow the nominal trajectory

 Magnetic field increases with
momentum and the per turn
change of the momentum is

ESRF Booster
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Phase stability on electron synchrotrons

 For electron synchrotrons, the relativistic γ is very large and
as momentum compaction
is positive in most cases

 Above transition, an increase in energy is followed by
lower revolution frequency

 A delayed particle with respect to the synchronous one will
get closer to it (gets a smaller energy increase) and phase
stability occurs at  the point P2 (π - φs)
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Energy and phase relation
 The RF frequency and phase are related

to the revolution ones as follows

and

 From the definition of the momentum
compaction and for electrons

 Replacing the revolution frequency change, the following
relation is obtained between the energy and the RF phase
time derivative

c

c c
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Longitudinal equations of motion
 The energy gain per turn with respect to the energy gain of

the synchronous particle is

 The rate of energy change can be approximated by

 The second energy phase relation is written as

 By combining the two energy/phase relations, a 2nd order
differential equation is obtained, similar the pendulum

    

! 

d
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 Expanding the harmonic functions in the vicinity of the
synchronous phase

 Considering also that the coefficient of the phase derivative
does not change with time, the differential equation reduces
to one describing an harmonic oscillator

with frequency

 For stability,  the square of the frequency should positive
and real, which gives the same relation for phase stability
when particles are above transition

Small amplitude oscillations
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 For large amplitude oscillations the differential equation of
the phase is written as

 Multiplying by the time derivative of the phase and
integrating, an invariant of motion is obtained

reducing to the following expression, for small amplitude
oscillations

Longitudinal motion invariant
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Separatrix
 In the phase space (energy

change versus phase), the
motion is described by
distorted circles in the vicinity
of φs (stable fixed point)

 For phases beyond π - φs
(unstable fixed point) the
motion is unbounded in the
phase variable, as for the
rotations of a pendulum

 The curve passing through
π - φs is called the separatrix
and the enclosed area bucket
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 The time derivative of the RF phase (or the energy change)
reaches a maximum (the second derivative is zero) at the
synchronous phase

 The equation of the separatrix at this point becomes

 Replacing the time derivative of the phase from the first
energy phase relation

 This equation defines the energy acceptance which depends
strongly on the choice of the synchronous phase. It plays an
important role on injection matching and influences
strongly the electron storage ring lifetime

Energy acceptance
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 When the synchronous phase is
chosen to be equal to 0 (below 
transition) or π (above transition), 
there is no acceleration. The 
equation of the separatrix is written

 Using the (canonical) variable

and replacing the expression for the synchrotron frequency

       . For φ= π, the bucket height is

       and the area

Stationary bucket
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 The longitudinal oscillations can be damped directly by
acceleration itself. Consider the equation of motion when the
energy of the synchronous particle is not constant

 From this equation, we obtain a 2nd order differential
equation with a damping term

 From the definition of the synchrotron frequency the
damping coefficient is

Adiabatic damping
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