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Outline - part I
 Hill’s equations

 Derivation
 Harmonic oscillator

 Transport Matrices
 Matrix formalism
 Drift
 Thin lens
 Quadrupoles
 Dipoles

 Sector magnets
Rectangular magnets

 Doublet
 FODO

Particle motion in
circular accelerator

Coordinate system
Beam guidance

Dipoles
Beam focusing

Quadrupoles
Equations of motion
Multipole field
expansion
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Coordinate system
 Cartesian coordinates not useful to describe

motion in an accelerator

 Instead a system following an ideal path along
the accelerator is used (Frenet reference system)

 The ideal path is defined by

 The curvature vector is
  From Lorentz equation

Ideal path

Particle trajectory

ρ

x

y

s

x
y

φ
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Beam guidance
 Consider uniform magnetic field B in the direction perpendicular to

particle motion. From the ideal trajectory and after considering that
the transverse velocities vx<< vs,vy<<vs, the radius of curvature is

 The cyclotron or Larmor frequency

 We define the magnetic rigidity

 In more practical units

 For ions with charge multiplicity Z and atomic number A, the energy
per nucleon is
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Dipoles
 Consider an accelerator ring

for particles with energy E
with N dipoles of length L

 Bending angle

 Bending radius

 Integrated dipole strength

SNS ring dipole

 Comments:
 By choosing a dipole field, the dipole

length is imposed and vice versa
 The higher the field, shorter or smaller

number of dipoles can be used
 Ring circumference (cost) is

influenced by the field choice

B

θ ρ

L
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Beam focusing
 Consider a particle in the design orbit.

 In the horizontal plane, it performs harmonic oscillations

            with frequency

 The horizontal acceleration is described by

 There is a week focusing effect in the horizontal plane.

 In the vertical plane, the only force present is gravitation.
Particles are displaced vertically following the usual law

x

y

s

ρ

design orbit

 Setting ag = 10 m/s2, the
particle is displaced by
18mm (LHC dipole
aperture) in 60ms (a few
hundreds of turns in
LHC)

          Need of focusing!
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 Magnetic element that deflects the beam by an angle proportional to the
distance from its centre (equivalent to ray optics) provides focusing.

 The deflection angle is defined as           , for a lens of focal length f
and small displacements y.

 A magnetic element with length l and gradient g provides field
so that the deflection angle is

Focusing elements

   The normalised focusing strength
is defined as

   In more practical units, for Z=1

   The focal length becomes
and the deflection angle is

y
α

f

focal point

f -1
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Quadrupoles
 Quadrupoles are focusing in one plane and

defocusing in the other
 The field is
 The resulting force
 Need to alternate focusing and defocusing in

order to control the beam, i.e. alternating
gradient focusing

 From optics we know that a combination of two
lenses with focal lengths f1 and f2 separated by a
distance d

 If f1 = -f2, there is a net focusing effect, i.e.

v

F

B

F

Bv
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Magnetic multipole expansion
 From Gauss law of magnetostatics, a vector potential exist

 Assuming a 2D field in x and y, the vector potential has only one
component As. The Ampere’s law in vacuum (inside the beam pipe)

 Using the previous equations, the relations between field components
and potentials are

i.e. Riemann conditions of an analytic function

There exist a complex potential of z = x+iy with a
power series expansion convergent in a circle with
radius |z| = rc (distance from iron yoke)

x

y
iron

rc
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Multipole expansion II
 From the complex potential we can derive the fields

 Setting

 Define normalized coefficients 

on a reference radius r0, 10-4 of the main field to get

 Note: n’=n-1 is the US convention
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Magnet definitions
2n-pole:
         dipole   quadrupole   sextupole    octupole …

n:          1                 2                     3                    4    …

Normal: gap appears at the horizontal plane
Skew: rotate around beam axis by π/2n angle
Symmetry: rotating around beam axis by π/n angle,

the field is reversed (polarity flipped)

N

S

N

S

S

N
N

S S

S
N N N

N

N

N

S

S

S

S
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Equations of motion – Linear fields
 Consider s-dependent fields from dipoles and normal

quadrupoles
 The total momentum can be written
 With magnetic rigidity              and normalized gradient 

the equations of motion are

 Inhomogeneous equations with s-dependent coefficients
 Note that the term 1/ρ2 corresponds to the dipole week

focusing
 The term ΔP/(Pρ) represents off-momentum particles
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Hill’s equations
 Solutions are combination of the ones from the 

homogeneous and inhomogeneous equations
 Consider particles with the design momentum. 

The equations of motion become

with
  Hill’s equations of linear transverse particle motion
 Linear equations with s-dependent coefficients (harmonic

oscillator with time dependent frequency)
 In a ring (or in transport line with symmetries), coefficients

are periodic
 Not straightforward to derive analytical solutions for whole

accelerator

George Hill
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Harmonic oscillator – spring

u

u

 Consider K(s) = k0 = constant

 Equations of harmonic oscillator
with solution

with
for k0 > 0

for k0 < 0

 

 Note that the solution can be written in matrix form
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 General transfer matrix from s0 to s

 Note that 
which is always true for conservative systems

 Note also that

 The accelerator can be build by a series of matrix multiplications

from s0 to s1
from s0 to s2

from s0 to s3

from s0 to sn

Matrix formalism

…
S0

S1 S2 S3 Sn-1
Sn



Tr
an

sv
er

se
 M

ot
io

n,
 U

SP
A

S,
 Ja

nu
ar

y 
20

08

16

  System with mirror symmetry

Symmetric lines

S

  System with normal symmetry

S
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to get a total 4x4 matrix

4x4 Matrices
 Combine the matrices for each plane

Uncoupled motion
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Transfer matrix of a drift

 Consider a drift (no magnetic elements) of length L=s-s0

 Position changes if particle has a slope which remains unchanged.

0 L

u’

u

u’⋅L

s

L

Real Space Phase Space

Before

After



Tr
an

sv
er

se
 M

ot
io

n,
 U

SP
A

S,
 Ja

nu
ar

y 
20

08

19

u’

u

(De)focusing thin lens

u’

u

0 f

 Consider a lens with focal length ±f

 Slope diminishes (focusing) or increases
(defocusing) for positive position, which remains
unchanged.

After
Before

0 f

Before
After
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 Consider a quadrupole magnet of length L = s-s0.
The field is

 with normalized quadrupole gradient (in m-2)

The transport through a quadrupole is

u’

u

Quadrupole

0 L s
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 For a focusing quadrupole (k>0)

 For a defocusing quadrupole (k<0)

 By setting

 Note that the sign of k or f is now absorbed inside the symbol
 In the other plane, focusing becomes defocusing and vice

versa

(De)focusing Quadrupoles
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 Consider a dipole of (arc) length L.
 By setting  in the focusing quadrupole matrix the

transfer matrix for a sector dipole becomes

with a bending radius
 In the non-deflecting plane and

 This is a hard-edge model. In fact, there is some edge
focusing in the vertical plane

 Matrix generalized by adding gradient (synchrotron magnet)

Sector Dipole

θ

L
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 Consider a rectangular dipole with bending angle θ. At each edge of
length ΔL, the deflecting angle is changed by

i.e., it acts as a thin defocusing lens with focal length
 The transfer matrix is with

 For θ<<1, δ=θ/2
 In deflecting plane (like drift),          in non-deflecting plane (like sector)

Rectangular Dipole

θ

ΔL
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Quadrupole doublet

x

L

 Consider a quadrupole doublet,
i.e. two quadrupoles with focal
lengths f1 and f2 separated by a
distance L.

 In thin lens approximation the
transport matrix is

with the total focal length

 Setting f1 = - f2 = f
 Alternating gradient focusing seems overall focusing
 This is only valid in thin lens approximation
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FODO Cell
 Consider defocusing quad

“sandwiched” by two focusing
quads with focal lengths ± f.

 Symmetric transfer matrix from
center to center of focusing quads

with the transfer matrices

 The total transfer matrix is

L L
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Outline - part II
General solutions of

Hill’s equations
Floquet theory

Betatron functions
Transfer matrices

revisited
General and periodic cell

General transport of
betatron functions
Drift
Beam waist

Normalized coordinates

Off-momentum particles
Effect from dipoles and

quadrupoles
Dispersion equation
3x3 transfer matrices

Periodic lattices in circular
accelerators
 Periodic solutions for beta

function and dispersion
 Symmetric solution

Tune and Working point
Matching the optics
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Solution of Betatron equations
 Betatron equations are linear 

with periodic coefficients

 Floquet theorem states that the solutions are

where w(s), ψ(s) are periodic with the same period

 Note that solutions resemble the one of harmonic oscillator

 Substitute solution in Betatron equations

0 0
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Betatron functions
 By multiplying with w the coefficient of sin

 Integrate to get

 Replace ψ’ in the coefficient of cos and obtain

 Define the Betatron or twiss or lattice functions (Courant-
Snyder parameters)
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Betatron motion
 The on-momentum linear betatron motion of a particle is

described by

with  the twiss functions

the betatron phase

 By differentiation, we have that the angle is

    and the beta function is defined by the envelope equation
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Courant-Snyder invariant
 Eliminating the angles by the position and slope we define

the Courant-Snyder invariant

 This is an ellipse in phase space with area πε
 The twiss functions have a geometric meaning

 The beam envelope is

 The beam divergence
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General transfer matrix
 From equation for position and angle we have

 Expand the trigonometric formulas and set ψ(0)=0 to get
the transfer matrix from location 0 to s

with

and the phase advance
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Periodic transfer matrix
 Consider a periodic cell of length C
 The optics functions are

and the phase advance

 The transfer matrix is

 The cell matrix can be also written as

with    and the Twiss matrix
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Stability conditions
 From the periodic transport matrix

and the following stability criterion

 In a ring, the tune is defined from the 1-turn phase
advance

i.e. number betatron oscillations per turn
 From transfer matrix for a cell

we get
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Transport of Betatron functions
 For a general matrix between position 1 and 2

    and the inverse

 Equating the invariant at the two locations

and eliminating the transverse positions and angles
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Example I: Drift
Consider a drift with length s

 The transfer matrix is

 The betatron transport matrix is

from which

s

γ
β

α
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Simplified method for betatron transport

Consider the beta matrix         the matrix

and its transpose

 It can be shown that

Application in the case of the drift

and
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Example II: Beam waist
 For beam waist α=0 and occurs

at s = α0/γ0
 Beta function grows

quadratically and is minimum in
waist

s

γ
β

α
waist

 The beta at the waste for having beta minimum

in the middle of a drift with length L is

 The phase advance of a drift is

which is π/2 when               .  Thus, for a drift
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Effect of dipole on off-momentum particles
 Up to now all particles had the same momentum P0

 What happens for off-momentum particles, i.e. particles
with momentum P0+ΔP?

 Consider a dipole with field B and 
bending radius ρ

 Recall that the magnetic rigidity  is 
and for off-momentum particles

 Considering the effective length of the dipole  unchanged

 Off-momentum particles get different deflection (different
orbit)

θ

P0+ΔP

P0

ρ
ρ+δρ
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 Consider a quadrupole with gradient G
 Recall that the normalized gradient is

and for off-momentum particles

 Off-momentum particle gets different focusing

 This is equivalent to the effect of optical lenses on
light of different wavelengths

P0+ΔP
P0

Off-momentum particles and quadrupoles
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 Consider the equations of motion for off-momentum
particles

 The solution is a sum of the homogeneous equation (on-
momentum) and the inhomogeneous (off-momentum)

 In that way, the equations of motion are split in two parts

 The dispersion function can be defined as
 The dispersion equation is

Dispersion equation
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Dispersion solution for a bend
 Simple solution by considering motion through a sector

dipole with constant bending radius ρ

 The dispersion equation becomes

 The solution of the homogeneous is harmonic with
frequency 1/ρ

 A particular solution for the inhomogeneous is
and we get by replacing

 Setting D(0) = D0 and D’(0) = D0’, the solutions for
dispersion are
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General dispersion solution
 General solution possible with perturbation theory and use of Green

functions
 For a general matrix    the solution is

 One can verify that this solution indeed satisfies the differential
equation of the dispersion (and the sector bend)

 The general betatron solutions can
be obtained by 3X3 transfer
matrices including dispersion

 Recalling that

and
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 For drifts and quadrupoles which do not create
dispersion the 3x3 transfer matrices are just

 For the deflecting plane of a sector bend we have seen that
the matrix is

and in the non-deflecting plane is just a drift.

3x3 transfer matrices - Drift, quad and sector bend
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3x3 transfer matrices - Synchrotron magnet
 Synchrotron magnets have focusing and bending included

in their body.
 From the solution of the sector bend, by replacing 1/ρ with

 For K>0

 For K<0

with 
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3x3 transfer matrices - Rectangular magnet
 The end field of a rectangular magnet is simply the one of

a quadrupole. The transfer matrix for the edges is

 The transfer matrix for the body of the magnet is like for
the sector bend

 The total transfer matrix is
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Chromatic closed orbit
 Off-momentum particles are not oscillating around design

orbit, but around chromatic closed orbit
 Distance from the design orbit depends linearly with

momentum spread and dispersion

Design orbit
Design orbit

On-momentum
particle trajectory

Off-momentum
particle trajectory

Chromatic close orbit
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Periodic solutions
 Consider two points s0  and s1 for which the magnetic

structure is repeated.
 The optical function follow periodicity conditions

 The beta matrix at this point is
 Consider the transfer matrix from s0 to s1

 The solution for the optics functions is

with the condition
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Periodic solutions for dispersion
 Consider the 3x3 matrix for propagating

dispersion between s0 and s1

 Solve for the dispersion and its derivative to get

with the conditions
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Symmetric solutions
 Consider two points s0 and s1 for which the lattice is mirror

symmetric
 The optical function follow periodicity conditions

 The beta matrices at s0 and s1 are
 Considering the transfer matrix between s0 and s1

 The solution for the optics functions is

with the condition
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Symmetric solutions for dispersion
 Consider the 3x3 matrix for propagating

dispersion between s0 and s1

 Solve for the dispersion in the two locations

 Imposing certain values for beta and dispersion,
quadrupoles can be adjusted in order to get a
solution
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Periodic lattices’ stability criterion revisited
 Consider a general periodic structure of length 2L

which contains N cells. The transfer matrix can be
written as

 The periodic structure can be expressed as

with
 Note that because
 Note also that
 By using de Moivre’s formula

 We have the following general stability criterion



Tr
an

sv
er

se
 M

ot
io

n,
 U

SP
A

S,
 Ja

nu
ar

y 
20

08

52

3X3 FODO cell matrix
 Insert a sector dipole in between the quads and

consider θ=L/ρ<<1
 Now the transfer matrix is

which gives

and after multiplication
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General solution for the dispersion
 Introduce Floquet variables

 The Hill’s equations are written
 The solutions are the ones of an harmonic oscillator

 For the dispersion solution           , the
inhomogeneous equation in Floquet variables is written

 This is a forced harmonic oscillator with solution

 Note the resonance conditions for integer tunes!!!
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Tune and working point
 In a ring, the tune is defined from the 1-turn phase

advance

i.e. number betatron oscillations per turn
 Taking the average of the betatron tune around the

ring we have in smooth approximation

 Extremely useful formula for deriving scaling laws
 The position of the tunes in a diagram of horizontal

versus vertical  tune is called a working point
 The tunes are imposed by the choice of the

quadrupole strengths
 One should try to avoid resonance conditions
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Example: SNS Ring Tune Space

Tunability: 1 unit in
horizontal, 3 units in vertical
(2 units due to bump/chicane
perturbation)

– Structural resonances (up
to 4th order)
– All other resonances (up to
3rd order)

• Working points considered
• (6.30,5.80)  - Old
• (6.23,5.24)
• (6.23,6.20) - Nominal
• (6.40,6.30) - Alternative
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Matching the optics
 Optical function at the entrance and end of accelerator may be fixed (pre-

injector, or experiment upstream)
 Evolution of optical functions determined by magnets through transport

matrices
 Requirements for aperture constrain optics functions all along the

accelerator
 The procedure for choosing the quadrupole strengths in order to achieve

all optics function constraints is called matching of beam optics
 Solution is given by numerical simulations with dedicated programs

(MAD, TRANSPORT, SAD, BETA, BEAMOPTICS) through multi-variable
minimization algorithms

      magnet structure

k1         k2            k3             k4            k5    …   km
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