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Linear imperfections and 
correction
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Linear Imperfections and correction

• Steering error and closed orbit distortion

• Gradient error and beta beating correction

• Linear coupling and correction

• Chromaticity
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Closed orbit distortion

• Causes
o Dipole field errors
o Dipole misalignments
o Quadrupole misalignments

• Consider the displacement of a particle δx from the ideal orbit . 
The vertical field is

• Remark: Dispersion creates a closed orbit 
distortion for off-momentum particles

• Effect of orbit errors in any multi-pole magnet

• Feed-down 2(n+1)-pole    2n-pole 2(n-1)-pole dipole

quadrupole   dipole
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Effect of single dipole kick
• Introduce Floquet variables

• The Hill’s equations are written
• The solutions are the ones of an harmonic oscillator
• Consider a single dipole kick at φ=π
• Then

and 
and in the old coordinates

Maximum distortion amplitude
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Example: Orbit distortion for the SNS ring

• In the SNS accumulator ring, the beta function is 6m in the dipoles and 30m in 
the quadrupoles.

• Consider dipole error of δy’=1mrad
• The tune is 6.2
• The maximum orbit distortion in the dipoles is
• For quadrupole displacement with 0.5mrad error the distortion is
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Closed orbit distortion
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Many orbit errors’ effect
• Consider random distribution of errors in N magnets
• The expectation value is given by

• Example:
o In the SNS ring, there are 32 dipoles and 54 quadrupoles 
o The expectation value of the orbit distortion in the dipoles

o And in the quadrupoles
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Transport of orbit distortion due to dipole kick
• Consider a transport matrix between positions 1 and 2

• The transport of transverse coordinates is written as

• Consider a single dipole kick at position 1
• Then, the first equation may be rewritten

• Replacing the coefficient from the general betatron matrix
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Closed orbit correction for the SNS ring
• Orbit distortion usually dominated by misalignments in the 

quadrupoles
• Place horizontal and vertical dipole correctors close to the 

corresponding quads
• Simulate (random distribution of errors) or measure orbit in Beam 

position monitors (downstream of the correctors)
• Minimize orbit distortion with several methods

o Globally
• Harmonic 
• Most efficient corrector 
• Least square

o Locally
• Bumps
• Singular Value Decomposition (SVD)
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Orbit bumps

• 2-bump: Only good for phase 
advance equal π between correctors

• Sensitive to lattice and BPM errors
• Large number of correctors

• 3-bump: works for any lattice
• Need large number of 

correctors
• No control of angles
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• Key issue for the performance -> super-periodicity 
preservation -> only structural resonances excited

• Broken super-periodicity -> excitations of all resonances
• Causes

o Errors in quadrupole strengths (random and systematic)
o Injection elements
o Higher-order multi-pole magnets and errors

• Observables
o Tune-shift
o Beta-beating
o Excitation of integer and half integer resonances

Gradient error and optics distortion
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• Consider the transfer matrix for one turn

• Consider a gradient error in a quad. In thin element approximation 
the quad matrix with and without error are

• The new 1-turn matrix is
which yields

Gradient error
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• Consider a new matrix after 1 turn with a new tune 

• The traces of the two matrices describing the 1-turn should be 
equal
which gives

• Developing the left hand side 

• and finally 
• For a quadrupole of finite length, we have

Gradient error and tune-shift
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• Consider the unperturbed transfer matrix for one turn

• Introduce a gradient perturbation between the two matrices

• Recall that and write the perturbed term as

• On the other hand 

• and 
• Equating the two terms and integrating through the quad

Gradient error and beta distortion
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• Consider 18 focusing arc quads in the SNS ring with 1% gradient 
error. In this location β=12m. The length of the quads is 0.5m

• The tune-shift is 
• For a random distribution of errors the beta beating is 

• Optics functions beating > 20% by putting random errors (1% of 
the gradient) in high dispersion quads of the SNS ring

• Justifies the choice of TRIM windings strength

Example: Gradient error in the SNS storage ring
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• Windings on the core of the quadrupoles (TRIM)
• Simulation by introducing random distribution of 

quadrupole errors
• Compute the tune-shift and the optics function beta 

distortion 
• Move working point close to integer and half integer 

resonance
• Minimize beta wave or quadrupole resonance width with 

TRIM windings
• To correct certain resonance harmonics N, strings should 

be powered accordingly
• Individual powering of TRIM windings can provide 

flexibility and beam based alignment of BPM

Gradient error correction
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• Betatron motion is coupled in the presence of skew quadrupoles
• The field is and Hill’s equations are coupled 
• Motion still linear with two new eigen-mode tunes, which are 

always split. In the case of a thin quad:

• Coupling coefficients

• As motion is coupled, vertical dispersion and optics function 
distortion appears

• Causes:
o Random rolls in quadrupoles
o Skew quadrupole errors
o Off-sets in sextupoles

Linear coupling
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• Introduce skew quadrupole correctors
• Simulation by introducing random distribution of 

quadrupole errors
• Correct globally/locally coupling coefficient (or 

resonance driving term) 
• Correct optics distortion (especially vertical 

dispersion)
• Move working point close to coupling resonances 

and repeat
• Correction especially critical for flat beams

Linear coupling correction
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Before Correction -0.009-0.014 0.016 -0.013-0.004 0.007 0.015 0.008 0.008 0.007 0.014 0.006 0.000 0.005 -0.006 0.006 0.015 -0.015 0.009 0.010

After correction 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000-0.000 0.000 0.000 0.000 -0.000-0.000 0.000 -0.000 0.000 0.000 0.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example: Coupling correction for the SNS ring
• Local decoupling by super period using 16 skew quadrupole 

correctors 
• Results of Qx=6.23 Qy=6.20 after a 2 mrad quad roll 
• Additional 8 correctors used to compensate vertical dispersion
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• Linear equations of motion depend on the energy 
(term proportional to dispersion)

• Chromaticity is defined as:
• Recall that the gradient is
• This leads to dependence of tunes and optics 

function on energy 
• For a linear lattice the tune shift is:

• So the natural chromaticity is:

Chromaticity
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• In the SNS ring, the natural chromaticity is –7.
• Consider that momentum spread
• The tune-shift for off-momentum particles is

• In order to correct chromaticity introduce particles 
which can focus off-momentum particle

Example: Chromaticity in the SNS ring

Sextupoles
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• The sextupole field component in the x-plane is:
• In an area with non-zero dispersion
• Than the field is

• Sextupoles introduce an equivalent focusing correction 

• The sextupole induced chromaticity is

• The total chromaticity is the sum of the natural and 
sextupole induced chromaticity

Chromaticity from sextupoles

quadrupole           dipole
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• Introduce sextupoles in high-dispersion areas 
• Tune them to achieve desired chromaticity
• Two families are able to control horizontal and vertical 

chromaticity 
• Sextupoles introduce non-linear fields (chaotic motion)
• Sextupoles introduce tune-shift with amplitude
• Example:

o The SNS ring has natural chromaticity of –7
o Placing two sextupoles of length 0.3m in locations where 
β=12m, and the dispersion D=4m

o For getting 0 chromaticity, their strength should be 
or a gradient of 17.3 T/m2

Chromaticity correction
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• Two families of sextupoles not enough for correcting off-momentum optics 
functions’ distortion and second order chromaticity

• Solutions:
o Place sextupoles accordingly to eliminate second order effects (difficult)
o Use more families (4 in the case of of the SNS ring)

• Large optics function distortion for momentum spreads of ±0.7%,when using 
only two families of sextupoles

• Absolute correction of optics beating with four families

Two vs. four families for chromaticity correction
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Non-linear imperfections and 
correction

Y. Papaphilippou and N.Catalan-Lasheras

USPAS, Cornell University, Ithaca, NY
20th June – 1st July 2005
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Non-linear effects and correction
• Kinematic effect
• Magnet fringe-fields
• Magnet imperfections
• Correction

o Sextupole correction
o Skew sextupole
o Octupole correction

• Singe-particle diffusion
o Dynamics aperture
o Frequency maps
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Kinematic effect

For the SNS ring, kinematic tune-shift is of the order of 0.001 @ 480 π.mm.mrad
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Magnet fringe fields

• Up to now we considered only 
transverse fields
• Magnet fringe field is the 
longitudinal dependence of the field 
at the magnet edges
• Important when magnet aspect 
ratios  and/or emittances are big
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General 3D field expansion

Consider a 3D magnetic field
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3D multipole coefficients
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3D field components
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Dipole fringe field
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Quadrupole fringe field
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Scaling law for magnet fringe fields

• Ratio between momentum components produced by fringe 
field over body contribution
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Studying fringe fields effects
• Be sure that they are important for your machine 

(scaling law)
• Get an accurate magnet model or measurement
• Study dynamics

o Integrating equations of motion
o Build a non-linear map

• Hard-edge approximation
• Integrate magnetic field
• Fit magnetic field with appropriate function (Enge 

function)

• Use your favorite non-linear dynamics tool to 
analyze the effect 
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Quadrupole fringe field in the SNS ring
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Quadrupole fringe field tune spread

• Tune footprint for the SNS based on hard-edge (red) and 
realistic (blue) quadrupole fringe-field
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Multipole errors

• All multi-pole components give suplementary non-
linear effects that have to be quantified and corrected 

• Most important the dodecapole component in a 21 cm 
quadrupole, with un-shaped ends. It is equal to 120.10-4

of the main quadrupole gradient.
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Sextupole correction for the SNS ring

• Causes
o Chromaticity sextupoles (small 

effect)
o Sextupole errors in dipoles (10-4

level)
o Dipole fringe-fields (small effect)

• Effects
o Zero first order tune-spread, 

octupole-like (linear in action) 2nd

order
o Excitation of normal sextupole 

resonances and  
• Correction 

o Eight Sextupole correctors in 
symmetrical non dispersive areas
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Skew Sextupole correction for the SNS ring
• Causes

o Chromaticity sextupoles roll
o Dipole roll
o Magnet multipoles

• Effects
o Zero first order tune-spread, octupole-like (linear in action) 2nd

order
o Excitation of skew sextupole resonances and  

• Correction 
o Skew sextupoles strings in the arc dipole correctors 
o Only connected 16 of them (at the beginning and end of the arc)
o 8 families formed
o Ability to correct resonant lines for all possible working points
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Octupole correction for the SNS ring
• Causes

o Quadrupole fringe-fields
o Kinematic effect (small)
o Octupole errors in magnets (10-4 level)
o Sextupole, skew sextupole error give octupole-like tune-spread

• Effects
o Tune-spread linear in action
o Excitation of normal octupole resonances and  

• Correction 
o 8 octupole correctors at the end of the arcs, independently 

powered
o Tune their strength to minimize resonance driving terms or tune-

spread
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Octupole tune-spread correction

• The corrected anharmonisities
become

• The area for a third octupole 
family is in the middle of the 
long straight section
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Error compensation in magnet design
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Magnet sorting
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Sorting quadrupoles to minimize beam loss
• Sort magnets to minimize effects of dangerous resonances 

for working point (6.4,6.3)
• Balance out multi-pole errors based on a) total field b) 

phase advance
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Single particle diffusion process 

Three major types of diffusion :
a) Resonance overlapping: particles diffuse across resonance lines.

FAST ~ 102 turns
b) Resonance streaming: particles diffuse along resonance lines.    

SLOW ~ ≥104 turns
c) Arnold diffusion: possibility of diffusion of particles in between the 
invariant tori of any slightly perturbed dynamical system (n>2).

EXTREMELY SLOW ~ ≥107 turns
• With the presence of magnetic errors only the machine performance 
cannot be compromised.  BUT: Space-charge + chromaticity + errors  + 
broken super-periodicity enhance particle diffusion
• Important complication:
! The increase of the space-charge force due to beam accumulation shifts 
the particles in the frequency diagram
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Diffusion due to magnet non-linearities for the SNS

•Tracking ~ 1500 particles with amplitudes near the loss boundary
• 85% of particles are lost within the first 100 turns
• Less than 1% of lost particles survive for more than 1000 turns
• Fast diffusion due to resonance overlapping

Survival Plot
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Dynamic Aperture

• Drop of the DA without chromatic sextupoles in both cases
• Unacceptable drop below physical aperture for δp/p = -0.02 (right)

Dynamic aperture tracking for on momentum particles (left) and for δp/p = -0.02 (right), 
without (blue) and with (red) chromatic sextupoles 
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Frequency and Diffusion Maps for the SNS 
Ring• Model includes

o Magnet fringe-fields (5th order maps)
o Magnet systematic and random errors (10-4 level)
o 4 working points, with and without chromaticity 

correction
o No RF, no space-charge

• Single particle tracking using FTPOT module of UAL
o 1500 particles uniformly distributed on the phase 

space up to 480 π mm mrad, with zero initial 
momentum, and 9 different momentum spreads (-2% 
to 2%)

o 500 turns 
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Working point (6.4,6.3)
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Working point (6.23,5.24)
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Resonance identification for (6.3,5.8)

Work. Point δp/p (%) Resonances Possible Cause Correction
-2.0 (2,-1) a3 random error Mag. Qual. + Skew Sext.
-1.5  (3,3) b6 error on quads Mag. Qual.
-1.0 (3,1) (1,3) a4 random error Mag. Qual.
-0.5 (3,0) (1,2) b3 error + dipole fringe fields Mag.Qual. + Sextupole
0.0
0.5

(1,1) (2,2) Quad. fringe fields Skew Quad. - Octupole
(4,0) (2,-2) (0,4) Quad. fringe fields Octupole

 (3,-1) (1,-3) a4 random error Mag. Qual.
(1,1) (2,2) Quad. fringe fields Skew Quad. - Octupole

(4,0) (2,-2) (0,4) Quad. fringe fields Octupole
 (1,-3) a4 random error Mag. Qual.

2.0

(6.3,5.8)

1.5

1.0
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Working Point Comparison

Tune Diffusion quality factor
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Correction packages

Baseline Quantity Powering Justification
Dipole 52 (+2) Individual Injection dump dipoles

TRIM Quadrupoles 52 28 families Beta beating correction due  to 
lattice symmetry breaking

Skew Quadrupoles 16 Individual Coupling correction

High-Field Sextupoles 20 4 families Correction of large chromatic 
effect

Normal Sextupoles 8 Individual
Sextupole resonance 

correction due to sextupole 
errors and octupole feed-down

Skew Sextupoles 16 8 families Skew sextupole resonance 
correction (AGS booster)

Octupoles 8 Individual Octupole resonance correction 
due to quadrupole fringe-fields
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