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Linear Imperfec

 Steering error and closed orbit distortion

» (radient error and beta beating correction

* Linear coupling and correction

* Chromaticity
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Closed orbit

* Causes
Dipole field errors
Dipole misalignments

Quadrupole misalignments

 Consider the displacement of a particle ox from the ideal orbit .
The vertical field is
B, =Gz =G(z + dz) = Gx + Gox
S
quadrupole dipole

* Remark: Dispersion creates a closed orbit

. . . )
distortion for off-momentum particles  dz = D(s) L

p

 Effect of orbit errors in any multi-pole magnet

—1

B, = b,z" = b, (z+0z)" = b, (x" +ndzx™ ' + ?’L(n2 )(5:c)2;z:”_2+. o+ (6z)™
' Y~ = g ~ =

2(n+1)-pole 2n-pole 2(n-1)-pole dipole
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e Feed-down



Effect of singl

* Introduce Floquet variables

_u At o poa Y _ 1 [ ds
Z/{—\/B,Z/l i \/Bu—:”\/{/gu,gb > 1/]

« The Hill’s equations are written a2 + U =0
 The solutions are the ones of an harmonic oscillator 7/ = 4, cos(v¢)
« Consider a single dipole kick v/ (7) = CS(B_? at O=m
e Then , du du d i ,—du
u (ﬂ-) - _MOVSIH(WV) - %‘Qb =m dS d:;ls k E|s=kﬁ(k)u - ( _Is k
Bk . ou(m)  du,  6(BI)
and U = 2|Sil’l(1/ﬂ')|5u () with 2 ds ’5_"’ ~ 2Bp

and 1n the old coordinates

B ~ /B(s)B(k) 6(BI)
=/ B(s)Uy cos(vp(s)) = 28111(7T1/) B) cos(vo(s))

— J
—~
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Example: Orbit
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* In the SNS accumulator ring, the beta function is 6m in the dipoles and 30m in
the quadrupoles.

* Consider dipole error of dy’=1mrad
* The tune 1s 6.2

e The maximum orbit distortion in the dipolesis yo =

V6 -6

. . 2sin(6.27)
e For quadrupole displacement with 0.5mrad error the distortion 1s g ~ 2.5cm !!!

1072 ~ 5mm
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Closed orbit disto

Al ESRT

V Bz ,y cos(|TQqx,y + Yz,y(8) — Y,y (T)])dT

Horizontal-vertical orbit distortion (Courant and Snyder 1957)

/ s+C P
Oz,y(s) = — o ) / A;S) )

2 sin(wQ

with AB(7) the equivalent magnetic field error at s = .

Approximate errors as delta functions in n locations:

Vi N —
Oz,y;i = 2Sln(7rQ$,y) Z bz ;i\ Ba,y;i COS(TQx,y + Yz ysi — YV, y;5l)

-

N J=1+1

=

> with ¢, ,.; kick produced by jth element: 7} M =1, €05 O ’
2 AB; L, : q\ /\ /
§ ® ;= _B',oLl —  dipole field error U U %\\/ U -
o

5 B, L, sin 0 '

‘é’ ® ¢; = Bp L —  dipole roll N N tan (e

©

0 0 T 2T
= G;L;Az,y; .

% ® p; = %px Yi quadrupole displacement

g

£



* Consider random distribution of errors in N magnets

* The expectation value 1s given by

VB(s)(6 >\/N (0B1)rms
2\/_2 ) sin(7v) ZB@ 2\/_2 ) sin(7v) Bp

< u(s) >

« Example:

In the SNS ring, there are 32 dipoles and 54 quadrupoles
The expectation value of the orbit distortion in the dipoles

2 6 - 6v32

Yo = \/,\/ .107° &~ 2cm
5 2v/2 sin(6.27)

g And 1n the quadrupoles

30 - 30v/54

Yo = 4 Vo4 103 ~ 13m

2v/2 sin(6.27)



* Consider a transport matrix between positions 1 and 2

mi11  Mi2
M1_>2 — (

mo1 M22

The transport of transverse coordinates 1s written as

Uy = MUl + M2
uy, = Moruy + Mmoot
T C . §(BI)
* Consider a single dipole kick at position 1  ju; = ——=
Lp

Then, the first equation may be rewritten

/ / /

Uo + 5UQ = M11U1 + mlg(ul + 5u1) — 5u2 = m125u1
« Replacing the coefficient from the general betatron matrix

OUy = \/5152 Siﬂ(¢12)5ull
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Closed orbit ¢

 Orbit distortion usually dominated by misalignments in the
quadrupoles

* Place horizontal and vertical dipole correctors close to the
corresponding quads

« Simulate (random distribution of errors) or measure orbit in Beam
position monitors (downstream of the correctors)

 Minimize orbit distortion with several methods
Globally

e Harmonic
» Most efficient corrector
* Least square

Locally
* Bumps
 Singular Value Decomposition (SVD)
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Orbit bumps
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Ok
N LESRE
o oY

2-bump: Only good for phase
advance equal m between correctors

, —
Sensitive to lattice and BPM errors 5“’2 —

Large number of correctors

QF QD QF QD QF
I : . K

3-bump: works for any lattice

vh
5

Need large number of

correctors V /8 1 5u/

No control of angles sin @93 1 gin ?31 2 ¢in D12




» Key issue for the performance -> super-periodicity
preservation -> only structural resonances excited

* Broken super-periodicity -> excitations of all resonances
* Causes

Errors in quadrupole strengths (random and systematic)
Injection elements
Higher-order multi-pole magnets and errors
* Observables
Tune-shift
Beta-beating

Excitation of integer and half integer resonances

Imperfections and Correction, USPAS, June 2005
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Gradient error

e (Consider the transfer matrix for one turn

Mo — (cos(Q'er) + ao sin(27Q) Bo sin(27Q) )
- —~0 sin(27Q) cos(2mQ) — g sin(27Q)

* Consider a gradient error in a quad. In thin element approximation

the quad matrix with and without error are
1 0

o (—Ko(S)dS 1) and m = (_(K0(8)1+ OK)ds (D

1
e The new 1-turn matrix is M = mmalMo = (_(5de (1)) Mo

which yields

Mo — cos(27Q)) + ap sin(27Q) Bo sin(27Q)
07 \0Kds(cos(27Q) — g sin(2mQ)) — 4o sin(2rQ)  cos(2rQ) — (§Kdsfoy + o) Sin(?ﬂ'Q))
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Gradient error

e Consider a new matrix after 1 turn with a new tune X = 27(Q + 6Q)

«  [cos(x)+ apsin(x) Bo sin(x)
M= ( —o sin(x) cos(x) — o Sin(x))

e The traces of the two matrices describing the 1-turn should be
equal Tra(M™) = Tra(M)
which gives 2cos(271Q) — 6 KdsfBy sin(271Q) = 2 cos(2m(Q + 0Q))
* Developing the left hand side
cos(2m(Q 4+ 0Q))) = COS(Q?TQ)SOS(Q?T(SQ) — sin(27Q) s'gl(QwéQ)j

J
Y

—~
1 2m0()

and finally 470Q = 6K dsf
* For a quadrupole of finite length, we have

1 80—|—l
5@ — —/ 5K,80d8
4

Sn
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* Consider the unperturbed transfer matrix for one turn

Mgy = (m“ m”) — B-A with A= (“11 “12) and (b“ bl?)

ma21  M22 a1 Q22 ba1 22
 Introduce a gradient perturbation between the two matrices
* *
x (M1 My _ 1 U
0 (m“Q‘l m“2‘2) =5 (—(5de 1) A
 Recall that mq5 = [y sin(27(Q)) and write the perturbed term as
mis = (Bo + 00) sin(27(Q + 0Q)) = 08sin(27Q) + 27w QB cos(2mQ)

e On the other hand
m’{z = 9110,12 + 612612% — algblgcstS — ,60 Sil’l(Qﬂ'Q) — algblgéKdS

Y

. mig and a2 = /BoB(s1)sin®, b1z = \/Bof(s1)sin (27Q — )
« Equating the two terms and integrating through the quad

0 1 s1+l1
/3_f T 2sin(27Q) / B(s)0K (s) cos(2¢) — 2mQ)ds y
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+ Consider 18 focusing arc quads in the SNS ring with 1% gradient
error. In this location p=12m. The length of the quads 1s 0.5m

o - 1 0.01
e The tune-shift is §Q = —18-12 0.5 = 0.015
¢ 4 5.6567
» For a random distribution of errors the beta beating is
op _ 1 (Z k232)1/2

B0 rims 2\f| sin(27Q)|
» Optics functions beating > 20% by puttmg random errors (1% of

the gradient) in high dispersion quads of the SNS ring

Imperfections and Correction, USPAS, June 2005

 Justifies the choice of TRIM windings strength 15



* Windings on the core of the quadrupoles (TRIM)

« Simulation by introducing random distribution of
quadrupole errors

« Compute the tune-shift and the optics function beta
distortion

* Move working point close to integer and half integer
resonance

 Minimize beta wave or quadrupole resonance width with
TRIM windings

* To correct certain resonance harmonics N, strings should
be powered accordingly

* Individual powering of TRIM windings can provide
flexibility and beam based alignment of BPM 16
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Betatron motion 1s coupled in the presence of skew quadrupoles
The field is (B,, By,) = k(x,y) and Hill’s equations are coupled

Motion still linear with two new eigen-mode tunes, which are
always split. In the case of a thin quad:

0@ ‘k‘ 5mﬁy
Coupling coefficients
Cy| = \1}(dsk(s)\/ﬁx(S)Qy(s)ei(%::l:%—(Q:c:I:Qy—qi)%rs/C)
2

As motion 1is coupled, vertical dispersion and optics function
distortion appears

Causes:
Random rolls in quadrupoles
Skew quadrupole errors
Off-sets 1n sextupoles

17



[Linear co

Imperfections and Correction, USPAS, June 2005

Introduce skew quadrupole correctors

Simulation by introducing random distribution of
quadrupole errors

Correct globally/locally coupling coefficient (or
resonance driving term)

Correct optics distortion (especially vertical
dispersion)

Move working point close to coupling resonances
and repeat

Correction especially critical for flat beams

18



Example: Coupling correct

Imperfections and Correction, USPAS, June 2005

g o
24| ESRF

* Local decoupling by super period using 16 skew quadrupole
correctors
* Results of Q,=6.23 Q,=6.20 after a 2 mrad quad roll
« Additional 8 correctors used to compensate vertical dispersion
0.0200
<P} 0.0150
D)
=
/=) 0.0100
P
g 0.0050 -
3 0.0000
—
S«  -0.0050
n
f__’. 20.0100
-
H -0.0150 A
Seed #
-0.0200
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
@ Before Correction |-0.009-0.0140.016|-0.013-0.0040.007/0.015/0.008{0.008|0.007(0.014/0.006|0.000{0.005|-0.0060.006|0.015{-0.0150.009/0.010
B After correction |0.000/0.000(0.000|0.000-0.0000.000{-0.0000.000{-0.000-0.0000.000{0.000|0.000-0.000-0.0000.000-0.0000.000/0.000{0.000
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* Linear equations of motion depend on the energy
(term proportional to dispersion)

. 5Qq

* Chromaticity 1s defined as: &y = - 5?, /}i’,

* Recall that the gradient is g = & —¢¢ 0K _ 0P
Bp P K P

* This leads to dependence of tunes and optics
function on energy

e Fora linear lattice the tune shift is:

0Qg.y = f'ﬁx yOK(s)ds = L(S_P fﬁm 4K (s)ds
* So the natural chromaticity 1 1s

1
Exy = _E j{ ﬁ:c,yK(S)dS

Imperfections and Correction, USPAS, June 2005
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Example: C

* In the SNS ring, the natural chromaticity 1s —7.

: oP
* Consider that momentum spread & = +1

* The tune-shift for off-momentum particles 1s

oP
(SQaj,y — gaj,y? = +0.07

 In order to correct chromaticity introduce particles
which can focus off-momentum particle

Sextupoles

Imperfections and Correction, USPAS, June 2005
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Chromaticit

* The sextupole field component in the x-plane 1s: B, = = ;?

: : : P
* In an area with non-zero dispersion g — 7, + D‘S_

P
 Than the field 1s

S 5P S _,0P?
B, = —x2+SD— —D?—
Y Y
. quadrupole dipole .
« Sextupoles introduce an equivalent focusing correction

5P
K =SD—
5K =S

* The sextupole induced chromaticity 1s
1
62y =~ § Bry(5)S(s) Da(s)ds

* The total chromaticity 1s the sum of the natural and

sextupole induced chromaticity

€% =~ § By (9)(S()Dls) + k(s))ds .

J

Imperfections and Correction, USPAS, June 2005
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Introduce sextupoles in high-dispersion areas
Tune them to achieve desired chromaticity

Two families are able to control horizontal and vertical
chromaticity

Sextupoles introduce non-linear fields (chaotic motion)
Sextupoles introduce tune-shift with amplitude

Example:
The SNS ring has natural chromaticity of —7

Placing two sextupoles of length 0.3m 1n locations where
B=12m, and the dispersion D=4m

For getting 0 chromaticity, their strength should be
S = 74w ~ 3m 3 or a gradient of 17.3 T/m?
12-4-2-0.3

23



Two vs. four famil

0 10 S0 30 0 20 Q0 . 0 10 S0 30 0 20 0
00 00
—— W ghib=—qryg0 110 = —— W' gbb=—(yg0 23y | o =
—— I’ ghib= 0080 1so0 & —— W gbib=(0s¢ SBN | [ sown 50 =
—— 1 ghb=(yye0 ' 0" gbib= 50 : =
o ﬂ X 21D o
+0 0 +0

10 -
= =
) E
B’ B’
B S0 - —
B <o = B b= rpa0
b ——— B obb=00s0
B ---- B gbib=0p150
—— B obib=pryge —— B gbib=pryge
10 : ' 30 : .

Two families of sextupoles not enough for correcting off-momentum optics
functions’ distortion and second order chromaticity

* Solutions:
o Place sextupoles accordingly to eliminate second order effects (difficult)
o Use more families (4 in the case of of the SNS ring)

« Large optics function distortion for momentum spreads of £0.7%,when using
only two families of sextupoles

Imperfections and Correction, USPAS, June 2005

« Absolute correction of optics beating with four families 24



Non-linear impertections and

correction
Y. Papaphilippou and N.Catalan-Lasheras

USPAS, Cornell University, Ithaca, NY
20™ June — 15 July 2005

Imperfections and correction, USPAS, June 2005

25



Imperfections and Correction, USPAS, June 2005

Kinematic effect
Magnet fringe-fields
Magnet imperfections

Correction
Sextupole correction
Skew sextupole
Octupole correction
Singe-particle diffusion
Dynamics aperture

Frequency maps

26



Kinematic effect

Imperfections and Correction, USPAS, June 2005

OVE
| ESRF

Kinematic non-linearity — high-order momentum terms in the expansion

of the relativistic Hamiltonian

e Negligible in high energy colliders
e Noticeable in low-energy high-intensity rings

First-order tune-shift;

(2k — 3)!! 2\ 20k — AN\ a1 ok
S0y = 3 B S A () () s
where G,y = .. 72,475, k=X g

Leading order — octupole-type tune-shift
For the SNS ring, kinematic tune-shift is of the order of 0.001 @ 480 n.mm.mrad

27



Magnet fringe fi

OV

10000 - e Up to now we considered only
9000 - . transverse fields
5000 - J . Ma_gneﬁ fringe field is the |
- longitudinal dependence of the field

N 70007 . at the magnet edges

g 00007 - e Important when magnet aspect
; % 5000 - . ratios and/or emittances are big
o . 7000 -
S 2 i
o & 4000 - 5000
” 3000 A E 5000 1
< [}
i 2000 - g 7
:C’. g 3000 -
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g
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General 3D field ex

Consider a 3D magnetic field

OP 0P OP
B(z,y,2) =V®(z,y,2) = —x+ —y+ —z ,
Ox Oy

where

0% P +02 +a2c1>
ox2 | Oy2 | 922

Vi®(z,y,2) =

Appropriate expansion:

(I)(ZU, Y, Z) T T C’m n(z)

m=0 n=0

?

n! m'

By Laplace equation: Cpi+2,n = —Cm n+2 — CL%,],”,

Imperfections and Correction, USPAS, June 2005
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3D multipole coefficie

Imperfections and Correction, USPAS, June 2005

The field components:

oo oo .’L'n ym
By(z,y,2z) = mzzof,;](?m—i_l’n(Z) )
B:(z,y, — C'L]i]n vy
(2,9,2) ;0?;} n(2)
The usual normal and skew multipole coefficients are:
b
bn(z) =C1,n(z) = (8 y) (0, O, Z)
ox™

0n(2) =Comi1(2) = (Gt ) (0,0.9)

Note that Cm,n = E?:O(_l)k (?)Czﬂ2k,n—|—2k—2£

.ﬁ??.:::':ll.

ESRF
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3D field components

@)

Consider two cases, for m = 2k (even) or m = 2k + 1 (odd)

Cgkn_Z( 1)k( ) Ay ok _oi_q > forn+2k—20—1>0

Cokt1,n = Z(—l)k( )bfﬂzk 21
=0

and finally the field components are

oo oo m 2T y2m [21] Y [21]
By (z, vy, 1 b —
w(®,y,2) = RZ{) 'm,ZO LZE)( ™ ( ) ! (2m)! ( nt+2m+1-215 T tom— 21)

oo T y2m [ m
L4 N [21]
By(xz,y,z) = 1 ( )b
y( ) nZZIOmZO( )" o (2m)'|:z:0 ;) O nt2m—2i
S (" Hal2 v
=5 [ n+2m+1 21 2m + 1

n ,2m
z"y p[20+1] Y L 121+1]
By(x,y,z) = nzo mzo IZ( 1) ( )m ( n+2m—21 2m+1 n+2m 1— 21)

Imperfections and Correction, USPAS, June 2005
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Dipole fringe field

Imperfections and Correction, USPAS, June 2005

Using the general z-dependent field expansion, for a straight dipole:

B, — i (=1)™z 2n+1y2m+1( )b[m]

Z 2n+2m+2—21
0 1= 2n + 1)!(2m + 1)! nram
o0 m
_ ( 1)m$2n 2m [21]
By= 2. 2 (2n)!(2m)! (z)b%”m—?l
m,n=0 [=0

( ].)’m;c2'n 2m+1( ) 2041]
(2n)!(2m 4+ 1)! 2n+2m—2I

I
K
Ms

B

and to leading order:

By = bg:r:y—|—0(4)
By = by~ S22 4 Zby(a? — 4?) + O(4)

2
B. = yby1+0(3)

Dipole fringe to leading order gives a sextupole-like effect (vertical
chromaticity)

32



Quadrupole fringe fie

Imperfections and Correction, USPAS, June 2005

General field expansion for a quadrupole magnet:

Z Z( 1)mm2ny2m+1 (m)b[%]
2n+2m—+1—-21
0 1=0 (2n)!(2m + 1)! \1

)m 2n+1,.2m

o= Z Z (2n + 1) 2ri)' ( )b[22i1+2m+1_21

m,n=0 [=0
le') ( 1)m 2n—|—1y2m+1 2041]
2= 2 Z A
m,n=0 =0 (2n + 1)!1(2m + 1)! ( )
and to leading order

) i ]

By = y|bi— 532"+ vt 4+ 0(5)
- 1 .

By = b - 5(3’92 + mQ)b[f] + O(5)

B. = aypil yon)

The quadrupole fringe to leading order has an octupole-like effect

ESRF
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Scaling law for ma

T
A\ ESRF

« Ratio between momentum components produced by fringe
field over body contribution

If o« small:

(Ap’j_)rms

When « or oy large:

! (Apjc_)rms o €l
(Apzj_)rms

where ¢, the rms beam transverse emittance. || where o the maximum of o, or a,.

: . o :
Leff (Apli)rms Lef’f

Imperfections and Correction, USPAS, June 2005

ok
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<
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Fringe-field figure of merit
3
=

100 -

LHC
Triplets

LHC Arc LHC Arc Dipoles ~ SNS Dipoles  SNS Quadrupoles
Quadrupoles
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Studying
* Be sure that they are important for your machine
(scaling law)

» Get an accurate magnet model or measurement
* Study dynamics
Integrating equations of motion

Build a non-linear map
« Hard-edge approximation
* Integrate magnetic field

 Fit magnetic field with appropriate function (Enge
function)

» Use your favorite non-linear dynamics tool to
analyze the effect .



Quadrupole fringe fi¢

Imperfections and Correction, USPAS, June 2005

The hard-edge Hamiltonian (Forest and Milutinovic 1988)
+Q

Hy = S (ygpy - iBSp;c + 3232'9133; - 39233_?3:::):

op
12Bp(1+%2)

First order tune spread for an octupole:

Vg __ | @hh  CQho 2Jx
JVty ahrv arvv 2Jy ’

where the normalized anharmonicities are

Aph = 1611'Bp Z TQiBrizi,
Apy = 1671'Bp Z Qz(ﬁmayz JByzam)
Ayy = 167TBp ;:{:Qz/@yzayz

ESRF
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Quadrupole fringe {

5.80 Ox -

realistic (blue) quadrupole fringe-field

Imperfections and Correction, USPAS, June 2005
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A perfect 2(n + 1)-pole magnet — &(r, 6, z) = ®(r, ;57 — 6, 2) which gives
n=(2j+1)(n+1)—-1

0.125}

e Normal dipole (n = 0) — by,
e Normal quadrupole (n = 1) — by;41

0.050F

e Normal sextupole (n = 2)— bgj1o |

* All multi-pole components give suplementary non-
linear effects that have to be quantified and corrected

* Most important the dodecapole component in a 21 cm
quadrupole, with un-shaped ends. It is equal to 120.10-
of the main quadrupole gradient.

38
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Sextupole correc

e (Causes

o Chromaticity sextupoles (small
effect)

o Sextupole errors in dipoles (104
level)

o Dipole fringe-fields (small effect)

o Effects

o Zero first order tune-spread,
octupole-like (linear in action) 2
order

o Excitation of normal sextupole
resonances and

e (Correction

o Eight Sextupole correctors in

I D R D

Sextupole Res. Driving Terms' Norm

0.6 -

0.5 -

0.4 4

0.3 4

0.2 4

0.1 4

0.0

—O—after correction

= 9= before correction

-11 10 -9

8 -7 -

5 4 3 -2 14 0 1 2 3

&x‘y
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e Causes

Chromaticity sextupoles roll

Dipole roll . ‘ m i
Magnet multipoles
 Effects

Zero first order tune-spread, octupolc T[ i 2nd
order

Excitation of skew sextupole resonances 3Q, = N and
« Correction 2Qz £ Qy =N
Skew sextupoles strings 1n the arc dipole correctors
Only connected 16 of them (at the beginning and end of the arc)

8 families formed

Imperfections and Correction, USPAS, June 2005

Ability to correct resonant lines for all possible working points
40



e Causes
Quadrupole fringe-fields
Kinematic effect (small)
Octupole errors in magnets (10 level)
Sextupole, skew sextupole error give octupole-like tune-spread
 Effects 4Qry =N 2Qz£2Qy =
Tune-spread linear 1n action

Excitation of normal octupole resonances and

 (Correction

8 octupole correctors at the end of the arcs, independently
powered

Tune their strength to minimize resonance driving terms or tune-
spread

Imperfections and Correction, USPAS, June 2005
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Octupole tune

e The corrected anharmonisities

3
become Ann = ann + 7o ; 0;B2;,

* The area for a third octupole | 6 ;
family is in the middle of the = "~ ToxB, 2 Oosfus
long straight section _ 3 22

Avy = ayo + 167 Bp %:Ojﬁyj'

-
(5]
]

o K1 o K2 o K3

-
o
1

(4]
1

o
1

Integ. Octupole strength (T/m?)

- -
L5 (=] (4]
..)

0 ; 1'0 1'5 5 10 15
Path (m) Path (m)

Imperfections and Correction, USPAS, June 2005
o
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Error compensation 1

Imperfections and Correction, USPAS, June 2005

Example: dodecapole in quadrupoles

Tune-spread:

oy 2 B
Oy

where D; denotes the 3 x 2 matrix

(

Bei
_3163?;53;?1

i.e. quadratic in the actions.

Method of correction — Shape ends of the quadrupoles (local

correction)

_Gﬁgiﬁyi

— ggt_

5

B gt

O

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

0.81

.
0.80

0.79
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B

4| ESRF

X beta-wave (21Q40 ITF sorting; 26Q40 & LK/ S
30Q44, 30Q58 sorting of multipoles without ITF

Magnet sorting

*All measured quads=>
g 12'14223: \ A 0.5% beta wave for and 10
ﬁ: 12375 | | red- ideal tune shift.
E 1;23;: green — sorted 21Q40
§ sl blue — beta-wave
= 12275 (mainly due to 30Q58) -Two string of 8 ,21Q40
20 25 3% . 35 40 45 + One string of 12, 21Q40
*One string of 8, 26Q40
§ X-beta wave at 1.3GeV with cut 30Q44 *One string of 8, 30Q58
% 12.5 — . ‘ . . *One sting of 8, 30Q44
=
= 12.45
o g
< £ 124 )
& 2 red — ideal
f:’. g 125 green — 2 magnets cut All 21Q40 were sorted and 7 were
.% E 12.3 ! blue — 1 magnet shimmed. Three 26040_were
% 2 s | compensated 22|ng189d a_rlld one re-alll_gned.();-\ll
= 122 pink = both magnets three 3385?3 \;\:'i.;levialsn:'mzte;d
= 20 25 30 35 40 45
g e compensated
S
3
g
£
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Sorting quadrup

* Sort magnets to minimize effects of dangerous resonances
for working point (6.4,6.3)

« Balance out multi-pole errors based on a) total field b)
phase advance

240 250 260 270 280
total emittance mm mrad

4
3.5
’ 3| I without sorting
2 25| ;
g 5 2 | |
5 S | — with sorting
< I
> X 15
: I — NO errors
s 05]
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Three major types of diffusion :
a) Resonance overlapping: particles diffuse across resonance lines.

= FAST ~ 107 turns
b) Resonance streaming: particles diffuse along resonance lines.

= SLOW ~ >10% turns
c) Arnold diffusion: possibility of diffusion of particles in between the
iInvariant tori of any slightly perturbed dynamical system (n>2).

= EXTREMELY SLOW ~ >107 turns
* With the presence of magnetic errors only the machine performance
cannot be compromised. BUT: Space-charge + chromaticity + errors +
broken super-periodicity enhance particle diffusion
 Important complication:
I The increase of the space-charge force due to beam accumulation shifts
the particles in the frequency diagram
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Diffusion due to

Survival Plot

100 -
o0 4 100

% of particles

10 - 200 300
400
T o 500 600 700 800 900 1000 >1000

Number of turns

*Tracking ~ 1500 particles with amplitudes near the loss boundary
» 85% of particles are lost within the first 100 turns

 Less than 1% of lost particles survive for more than 1000 turns
 Fast diffusion due to resonance overlapping

Imperfections and Correction, USPAS, June 2005
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Emittance (x mm mrad)

DA for on momentum particles
with sextupoles ‘ T

without sextupoles =)

@

(=]

=
)

o

b=

=
L

Physical Aperture (dp/p=10.02)

Emittance {x mm mrad)

Imperfections and Correction, USPAS, June 2005

0.3 04 0.5 0.6 0.7 0.8
syl(scts y)

Dynamic aperture tracking for on momentum particles (left) and for dp/p =-0.02 (right),
without (blue) and with (red) chromatic sextupoles

DA for 5p/p=-0.02

with sextupoles

without sextupoles

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

exd(extey)

* Drop of the DA without chromatic sextupoles in both cases
* Unacceptable drop below physical aperture for ép/p =-0.02 (right)



Frequency :

e Model includes
Magnet fringe-fields (5™ order maps)
Magnet systematic and random errors (104 level)

4 working points, with and without chromaticity
correction

No RF, no space-charge
» Single particle tracking using FTPOT module of UAL

1500 particles uniformly distributed on the phase
space up to 480 m mm mrad, with zero 1nitial
momentum, and T}:hﬂerent moamentum spreads 2%

to 2%) T (I, 1)
500 turns

Papy=0y T 7 (‘Ul‘? ‘UEJ)

Imperfections and Correction, USPAS, June 2005
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6.4

Vertical Tune
=)
[9%)

6.2

SNS Working Point (QX,Qy)=(6.4,6.3)

Sp/p=[2%,-2%] @ 480 © mm mrad

|
6.3 6.4 6.5
Horizontal Tune

Vertical Tune

Gplp==1% (@ 480 © mm mrad

6.4 |

6,39

6.38

6.37

0.08

.06

004

Vertical Position [m]

0.02

648 649 6.5

651

Horizontal Tune
Apip=—1.0%
.
.
]
0.02 0.04 0.06 0.08

Horizontal Position [m]

@

|D| <107

1077 < [D] <
1078 < | D] <
10-%.z |B| =
1074 =< [D| =
10" | B] <
1072 < |D|

10—(5
10
101
1074
1072
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Working point (6.2

op/p=0 @ 480 T mm mrad

—— 0.08 F ' .
‘ /
\
5.26
0.06 [ .
£
5 L 4
= s
L = .‘:
= -
¢ = S 0.04 | .
¢ 9 =
¢ 5 525 -
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Resona

Work. Point]dp/p (%)] Resonances Possible Cause Correction
-2.0 (2,-1) a3 random error Mag. Qual. + Skew Sext.
-1.5 (3,3) b6 error on quads Mag. Qual.
-1.0 (3,1) (1,3) a4 random error Mag. Qual.
-0.5 (3,0) (1,2) b3 error + dipole fringe fields| Mag.Qual. + Sextupole
3 0.0
) 0.5
03 (6.3,5.8) (1,1) (2,2) Quad. fringe fields Skew Quad. - Octupole
¥ 1.0 (4,0) (2,-2) (0,4) Quad. fringe fields Octupole
°3 (3,-1) (1,-3) a4 random error Mag. Qual.
(1,1) (2,2) Quad. fringe fields Skew Quad. - Octupole
: 1.5 (4,0) (2,-2) (0,4) Quad. fringe fields Octupole
k! (1,-3) a4 random error Mag. Qual.
i 2.0

Imperfection
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Working Point (

A\ ESRT

D
Tune Diffusion quality factor |Dor = 1 217 ) &
0 yU
Working point comparison (no sextupoles)
0.014 -
T A\ (6.23,5.24)
. <(6.4,6.3)
10 § 0.01 1
: 5
% E 0.008 -
5 g 0006 /\ 0 (6.3,5.8)
- APV | W S V L L W X
- = 0.004 A F AN 7 \ WL S Y Y
E AN 7N 74 1/ SN
o 0.002 - . A R
= :
O =
_g 0 Y T T T T T T ¥ 1
2 25 2 15 -1 05 0 0.5 1 1.5 2 2.5
= Momentum spread [%]
(0]
g
£
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Baseline Quantity| Powering Justification
Dipole 52 (+2) | Individual Injection dump dipoles
. Beta beating correction due to
TRIM Quadrupoles 52 28 families . J .
lattice symmetry breaking
Skew Quadrupoles 16 Individual Coupling correction
: : . Correction of large chromatic
High-Field Sextupoles 20 4 families v
effect
Sextupole resonance
Normal Sextupoles 8 Individual correction due to sextupole
errors and octupole feed-down
. Skew sextupole resonance
Kk I 1 families :
Skew Sextupoles © 8 famil correction (AGS booster)
Octupoles 3 individual Octupole resonance correction

due to quadrupole fringe-fields
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