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High-Intensity Circular Accelerators Preface

Preface

High-intensity synchrotrons and accumulator rings are essential elements for new-generation
accelerator facilities including spallation neutron sources, neutrino factories, and multi-functional
applications. This course is to introduce design principle and procedure, beam physics and
technology for the high-intensity frontier machines. We will start from the design philosophy
and basic functions of the ring and the transport lines, and study machine lattice and op-
timization, injection and extraction options, and machine aperture determination. We then
will emphasize on beam dynamics subjects including space charge, transverse phase space
painting, longitudinal beam confinement with single and dual harmonic radio-frequency sys-
tems, magnetic nonlinearity and fringe field, and beam collimation. In computer simulation
sessions we will study basic tracking and mapping techniques, tune spread and resonance
analysis techniques, and statistical accuracy. Finally, we will discuss more advanced topics
like transition crossing, intra-beam Coulomb scattering, beam-in-gap cleaning, chromatic and
resonance correction, electron cloud effects and instabilities.

Prerequisites: Accelerator fundamentals or Accelerator physics
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1 Introduction

For the five decades since the discovery of the synchrotron [1] and the principle of alternating-
gradient focusing [2], the development of accelerator science and technology has sustained
exponential growth in both the energy and intensity of the proton beam as shown in the
“Livingston chart” ([3, 4] and Figure 1). Combined with an increasing repetition rate, the
high proton beam power has extended its use from nuclear and high-energy physics to modern
applications including spallation neutron production, kaon factories, nuclear transmutation,
energy amplification, neutrino factories and muon collider drivers.
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Figure 1: Evolution of ring intensity (particles per pulse). The parentheses indicate repetition
rate in Hz.

Several factors have made the use of synchrotrons and accumulators possible for high in-

tensity beams. One is the development of intense, high-duty factor, low emittance H~ and H*
ion sources. A second is the invention of the Radio-Frequency Quadrupole (RFQ) [5], replac-
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ing Cockcroft-Walton as pre-accelerator, combining focusing and acceleration while preserving
emittance. A third is the development of linear accelerator technology including permanent
magnet quadrupoles for drift-tube linacs and super-conducting technology for operational
economy and reliability.

This course discusses mainly the development of synchrotrons and accumulators, empha-
sizing experiences gained in recent years, current issues, and the future outlook.

1.1 Overview

Generally, there are two types of circular accelerators for high intensity purposes: either an
accumulator (LAR) that accepts beams from an injector (usually a full-energy linac) and then
compresses them to form pulsed time structure, or a rapid-cycling synchrotron (RCS) that
accepts beams from an injector (either a linear accelerator, a cyclotron, or a lower-energy
synchrotron) and then compresses and accelerates them to a higher energy.

The LAR scheme has the advantage of a simple ring design with neither field ramping nor
acceleration. The time that the beam spends in the ring is relatively short (typically of the
order of 1 ms) for many types of instability (e.g. head-tail instability) to fully develop. The
field quality of the magnets can be optimized by geometrical compensation at the design exci-
tation current. Therefore, this scheme is often preferred for dedicated high-intensity facilities
where beam loss needs to be strictly minimized. Figure 2 shows the schematic layout of the
proposed European Spallation Source that consists of a full-energy linac that accelerates the
H™ beam to 1.334 GeV, and then two accumulator rings that compress the beam to desired
pulsed structure for neutron spallation.

The RCS scheme has the advantage of a lower-cost injector, and the potential for energy
and power upgrade by either accelerating to a higher energy or by adding subsequent acceler-
ators. It can also become a good candidate when a bunch of short bunch length is desired (e.g.
for neutrino factory and muon collider applications). However, in order to reach a high output
power, the entire compression process needs to be completed in a short time (typically in tens
of ms). Consequently, a fast ramping is needed demanding a fast magnetic field cycling, a
high voltage radio-frequency acceleration system, and a large power supply. Measures needs
to be taken to reduce the heating caused by ramping magnetic field without increasing beam
coupling impedance caused by the beam image charge. Figure 3 shows the schematic layout
of the JAERI/KEK Joint Project under construction at Japan which consists of a 400 MeV
linac, a 3 GeV Booster synchrotron, and a 50 GeV synchrotron for multi-purpose applications
including nuclear transmutation (linac), neutron spallation (3 GeV ring), and high-energy and
nuclear experiments.

Table 1 shows main parameters and machine type of some existing and proposed high-
intensity facilities including spallation neutron sources, neutrino-factory proton drivers (NFPD),
muon collider drivers, nuclear transmutation, and energy amplifier (EA) [36, 37]. Among them,
applications on neutron spallation and neutrino factory/muon collider proton driver are made
possible by the high, pulsed beam power achieved with accumulators and rapid-cycling syn-
chrotrons.
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Figure 2: Schematic layout of the proposed European Spallation Source accelerator complex
(courtesy G. Rees, C. Prior).

9 June 28, 2002



High-Intensity Circular Accelerators Introduction

1

.; ey
!E[ i s _”"%xj
' == TR a

T , _ z 1 ! . L~
L~
= : ]
T e S
I Jz:?j‘: ).— ( LA‘F‘\.
i £ A
= 7 7 AN
= = i
o
==

Figure 3: Schematic layout of the proposed JAERI-KEK Joint Project accelerator complex
(courtesy Y. Mori, S. Machida).
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Table 1: Main parameters of some existing and proposed accelerator-based high-intensity
facilities.

Machine Ey (I) N, v (P) Type
[GeV] [mA]  [ppp] [Hz] [MW]

Existing:

LANSCE 0.8 2.3x10' 20 0.07 LAR
ISIS 0.8 2.5x10 50 0.2 RCS
Proposed:

JKJ (Japan) 3.0 0.33 8x10% 25 1.0 RCS

SNS (US) 1.0 2 2.1x1014 60 2.0 LAR
ESS (Europe) 1.334 1.8 2.3x10" 50 2.5 LAR (x2)
NFPD (CERN) 2.2 1.8 15x10" 75 4 LAR
NFPD (RAL/CERN) 5 04  1x10% 25 2 RCS (x2)
NFPD (FNAL) 16 0.125 5x10% 15 2 RCS (x2)
Energy Amplifier 1 10/20 CW CW 10/20 Cyclotron
APT (LANL) 1.03 100 CW CW 103  Linac
TRISPAL (CEA) 0.6 0 CW CW 24  Linac
ADTW (LANL) 0.6/1.2 20/50 CW CW >20 Linac

u collider PD 30 0.25 15 7.5 RCS

1.2 Beam Power, Current, Time Structure

The usefulness of a high intensity beam is usually measured by the average beam power. The
average beam power is defined as the product of the average current of the beam and the
kinetic energy of the beam particle.

(P) Wl =E(I) [V-A] =fx NyeE, [s'-C-V] (1)

The average current (I) of the accelerator facility introduced above (not to be confused
with the average current of the ring) is the product of the number of electrical charge per beam
pulse, and the repetition rate fy of the pulse. The repetition rate, defined as the number of
ring machine cycle per unit time, describes the speed of ramping of the accelerator systems
(magnet, RF, injection, extraction). Figure 4 shows the time structure of a typical pulsed
beam injected from linac observed at locations upstream of ring injection and downstream of
ring extraction, respectively. In this example, the repetition rate is 60 Hz. Within each cycle,
the time period of ring injection is 1 ms, or 1000 revolution periods. The beam revolution
frequency in the ring is 1 MHz. The beam is compressed from the original length of 1 ms to
1us. Here in the ring, each beam pulse consists of two bunches confined by the RF system.

The average current I of the ring is defined as

I = Nef, (2)
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Figure 4: Typical time structure of beam pulses before ring injection and after ring extraction.
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where NN is the number of charged particle per pulse, e is the electrical charge, and f, is the
synchronous revolution frequency. The peak current I of the ring refers to the instantaneous
value of the ring current. The bunching factor B is defined as the ratio between the average
and the peak current,

B=1I/I<1. (3)

A high bunching factor is desirable in minimizing peak space charge tune shift and in avoiding
instabilities.

1.3 Beam loss, Radiation, Activation, Protection

The primary concern in the design of high-intensity proton facilities is that radio-activation
caused by uncontrolled beam loss can limit a machine’s availability and maintainability. Typ-
ically, hands-on maintenance requires a residual activation level no more than 1 mSv per hour
(1 Sievert = 100 rem). Table 2 shows the significance of radiation exposure.

Exposure Significance
3.5 Sv 50% chance of survival
> Sv Serious to lethal
> 50 mSv Requiring medical checks
50 mSv.y ! Occupational dose limit

15— 50 mSv.y ! Strict dose control necessary
5-15mSv.y !  Professional exposure
< 5mSv.y™!  Minimum control necessary
1 mSv.y~! Natural background
10 uSv.y ! Insignificant

Table 2: Guidelines to the significance of exposure to radiation.

Based on both measurement and computer simulation, it is concluded that a beam loss of
1 Watt beam power per tunnel meter corresponds to a residual radiation exposure of about 1
mSv per hour, measured at a distance of 30 cm from the surface, 4 hours after the shut-down
of the machine after a long period (one month or so) of operation. For a facility of 2 MW
power, a 1 mSv/h level requires an uncontrolled fractional beam loss of below 0.5x107% per
meter. For a ring of circumference of 200 meters, this corresponds to a total uncontrolled
fractional loss of about 10~%.

Figure 5 shows a schematic layout of the Spallation Neutron Source accelerator complex.
It accelerates H~ beams from the front end (H™ ion source, Low-Energy-Beam-Transport,
RFQ, Medium-Energy-Beam-Transport) through a 1 GeV full-energy linac (Drift-Tube-Linac,
Coupled-Cavity Linac, Superconducting RF Linac) and delivers through the High-Energy-
Beam-Transport to an accumulator ring, and then strips and compresses the proton beams
and delivers through a Ring-Target-Beam Transport to a liquid Mercury target for neutron
spallation.
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Figure 5: Schematic layout of the Spallation Neutron Source accelerator complex.
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Figure 6 shows the estimated distribution of uncontrolled beam loss. For detailed descrip-
tion of this plot see [163]. Some discussion of typical beam loss sources in the ring is provided
as a special topic.

3- High rad
Uncontrolled loss il
25 - during normal operation
E 2
= FE
g 1.5 -
1S DT
S 14
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ccL \
05 | HEBT < RING >
SCl = RTBT,
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L4e0r99th [m] >0
Figure 6: Expected distribution of uncontrolled beam loss.

Problem 1.1 Evaluate beam power on target of a two-ring RCS, and the average allowed
beam loss ...

1.4 Design Philosophy

Existing proton synchrotrons and accumulators have beam losses as high as several tens
of percent, mostly occurring at injection, capture, initial ramping, transition crossing, and
through instabilities. The lowest beam loss is about 3x 1073, achieved at the Proton Storage
Ring (PSR) at the Los Alamos National Laboratory [7]. Uncontrolled beam losses are usu-
ally attributed to (1) a high space-charge tune shift (0.25 or larger) at injection resulting in
resonance crossing; (2) limited physical and momentum acceptance; (3) premature H- and
H° stripping and injection foil scattering; (4) large magnet field errors, misalignments and
dipole-quadrupole matching errors during ramping; (5) instabilities (e.g. head-tail instability,
coupled bunch instability, negative mass and microwave instability, PSR instability); and (6)
accidental beam loss (ion source and linac malfunction, extraction kicker mis-fire, etc.).

A low-loss design or upgrade must address the above issues. Furthermore, with a large
transverse and momentum aperture, multi-stage collimation and momentum cleaning can be
incorporated to localize beam loss to shielded locations. Flexibility and robustness (tune
adjustment, injection option, ramp-dependent correction, adjustable collimation, foil inter-
change, spare interchange) need to be reserved for commissioning and operation, and engineer-
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ing reliability (heat and radiation resistance) and availability (a foil interchange mechanism,
quick-disconnect flanges, crane, etc.) need to be addressed at an early design stage.

16 June 28, 2002
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2 Design Topics

This chapter discusses design aspects of high-intensity rings.

2.1 Key parameters
2.1.1 Ion species

The choice is typically between proton and H™ beam. The advantage of a H~ beam upon ring
injection is that multi-turn injection can be effectively facilitated to increase the transverse
beam size and to reduce the space charge effects.

Complications caused by using a H™ beam include ionization and magnetic stripping, as
well as availability of high-output H™ ion source.

2.1.2 Kinetic energy

The energy range is largely determined by the need of target experiments and the power of
applications. From the accelerator point of view, a higher injection energy alleviates space-
charge effects by enhancing electro-magnetic force cancellation. A higher extraction energy
increases output beam power, and reduces heating on target (longer stopping length). On
the other hand, a higher injection energy implies a higher cost on the injector, and demands
a lower magnetic field to minimize magnetic stripping and thus even longer magnet length
for beam guiding and focusing. A higher extraction energy implies a higher magnetic field, a
faster ramping power supply and RF voltage, and demanding field quality control.

2.1.3 Repetition rate

The repetition rate is an important quantity especially for a rapid-cycling synchrotron. It
determines the power supply of the magnet system, the peak voltage of the RF system,
the achievable magnetic field saturation error and eddy-current error, and the required RF
shielding to avoid vacuum chamber heating without increasing the coupling impedance. For
an accumulator, the constraint is more from the pre-injector performance (ion source and linac
duty cycle, klystron power ...) and less from the ring itself (RF beam loading, injection and
extraction kicker power supply ...).

2.1.4 Intensity and bunch length

The bunch length is often pre-determined by the demands of the experiments or applications.
From the accelerator point of view, a beam gap must be reserved before the beam is extracted
from the ring. This beam gap can be achieved using a radio-frequency system, either confining
the beam to the center part of the Rf bucket, or by intentionally leaving empty some RF
buckets when the harmonic number of the RF system is much larger than one.

The intensity of the pulse is usually limited by space-charge constraints and instability
limits. The intensity of the bunch is partly determined by the bunch length needs, and partly
determined by requirements from single-bunch effects (e.g. intra-beam scattering). When the
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bunch length is not critically defined by the applications, the choice of the number of bunches
in the ring is often balanced by the availability of the RF system at specified frequency, the
easiness of extraction, the complication of possible coupled-bunch instability, the beam-gap
cleaning needs.

2.1.5 Emittance

Unlike an electron machine where synchrotron radiation can cause emittance reduction, in
a typical proton or ion accelerator the beam emittance can not be easily reduced. (Beam
cooling for high-intensity beam usually takes a long time, not compatible with the usual rapid
cycling rate.) Therefore, emittance preservation is usually important.

The transverse beam emittance is often pre-determined by the application’s needs. In
the case that output emittance is not critical (like neutron spallation applications), a large
emittance is often used to reduce space-charge effects. In such cases, the constraint is from
practical considerations such as magnet aperture, field, and power supply requirements.

The longitudinal beam emittance is a product of the bunch length and momentum spread.
The momentum spread is often limited by the chromatic property of the ring.

2.2 Layout

Modern high-intensity ring is often designed with transport lines that prepares the beam for
ring injection, and delivers the beam for final applications.

2.2.1 Transport lines

Figure 7 shows the layout of transport lines for a ring. The transport line that leads the beam
to the ring plays the crucial role of transverse and momentum halo cleaning, momentum
jitter correction, possibly longitudinal and transverse painting, injection optics matching and
optimization, and diagnostics. The transport line that leads the beam from the ring plays
the role of accidental damage protection. The various beam dumps are necessary for staged
commission, routine operation (injection dump) and machine studies during operation.

2.2.2 Ring

Figure 8 illustrates the layout of a typical ring for high-intensity applications [8]. In order
to facilitate robust injection, collimation, and extraction, long uninterrupted straight sections
are often preferred. In this example, four straight sections are designed for injection, collima-
tion, radio-frequency (RF) system, and extraction, respectively. For synchrotrons with high
repetition rate, long sections are often occupied by radio-frequency cavities.

Double-ring arrangement is sometimes used to alleviate the intensity burden on each ring.
For example, the European Spallation Source was designed with two vertically stacked rings of
same geometry sharing the same tunnel. The advantage of a two-ring design includes machine
availability in the case of component failure, possible savings of tunnel length and machine
aperture in comparison with one-ring design of similar performance, and possible sharing
of hardware like power supplies. The disadvantage includes complications in installation,
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Figure 7: Possible layout and functions of transport lines for a ring.
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Figure 8: Schematic layout of the Spallation Neutron Source (SNS) accumulator ring.
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engineering (e.g. magnet support), and maintenance in a double-ring structure, as well as the
net summation of beam loss and activation from both rings.

2.3 Lattice

The lattice is the back-bone of a ring. Recently designed ring lattices often prefer separate-
function magnets instead of combined-function magnets for robustness. Tunes are often split
by at least half to reduce space-charge coupling and suppress systematic skew quadrupole
components.

A traditional choice is the FODO and its variations. FODO structures require modest
quadrupole gradients, and the alternating transverse beam amplitudes easily accommodate
correction systems. With various arrangements of dipoles, one can create dispersion-free
regions for injection, extraction, and RF systems [9, 10], and low momentum compaction to
avoid transition crossing [9].

A lattice consisting of doublets/triplets has the advantage of long uninterrupted drifts
for flexible injection and optimal collimation. Synchrotrons of this structure also have fewer
vacuum chambers and joints [11].

The SNS accumulator ring adopts a hybrid structure with FODO arcs and doublet straights.
It combines the FODO structure’s simplicity and ease of correction with the doublet struc-
ture’s long drift (12.5 m) for flexibility [8]. The arcs and straights are optically matched to
ensure maximum betatron acceptance. A horizontal phase advance of 360° across each arc
makes the straights dispersion free. Each dipole is centered between two quadrupoles so as to
maximize the vertical acceptance of the dipoles.

2.3.1 Arc

The most common structure is separate function focusing-drift-focusing-drift, or FODO struc-
ture. Using the thin-lens approximation, we can express Courant-Snyder amplitude function
By, Qzy, and dispersion D, , in terms of betatron phase advance per cell p., cell length L.,
and bending angle of the whole cell ¢.. The maximum (+) and minimum (—) value of these
functions are

g = L.(1 £5sin &) (1)

Sin [,

1 —sin£e
o = FLE0G) (5)

e
COS D)

Lep.(1+ % sin %)

+ _
b= 4sin? be (©)
The natural chromaticity per FODO cell is
1 c
gFODO: —;tan% (7)
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Figure 9: JAERI-KEK Joint Project (JKJ) 3-GeV ring lattice super-period (courtesy S.
Machida) of FODO structure. The machine super-periodicity is 3. The split quadrupole
creates high-dispersion drift for momentum halo scraping and chromatic adjustment.
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Figure 11: SNS ring lattice super-period of FODO/doublet structure. The machine super-
periodicity is 4.
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The cell length L. is usually determined by the drift space needed to accommodate magnets
and instruments. The bending angle ¢. is usually determined by the overall ring geometry.
Normalized to these quantities, Figure 12 shows the dependence of key lattice figure of merits
on the cell phase advance. As a design guideline, we usually prefer a low 3T to maximize
betatron acceptance, a low dispersion to maximize momentum acceptance, and a low 3 /3~
ratio to avoid possible beam halo generation. The maximum [-function 3%/L. reaches a
minimum at p./2m = 0.21. Typically, phase advance p./27 is selected to be between 0.16 and
0.25 (60 to 90 degrees per cell).

2.3.2 Dispersion suppressor

The goal of dispersion suppression is to eliminate dispersion in the straight section without
affecting o and (3 in the arc. Dispersion suppression for the straight section can be achieved
either by a choice of horizontal phase advance of the arc, or by dedicated dispersion suppression
insertions.

Achromat By simply locking the total horizontal phase advance across each arc to an integer
number of 27, the dispersion becomes zero outside of the arc. The advantage of this scheme
is that the arc is compact, not containing any dispersive drift spaces. The disadvantage of
this scheme is the lack of arc tuneability in the horizontal direction.

As shown in Figure 11, the arc achromat consists of 4 DOFO cells with horizontal phase
advance p. = m/2. An alternative is to use 4 FODO cells with the same phase advance per
cell. In the later case, the peak dispersion is increased by about 10%.

Suppressor insertion Dispersion suppression using a dedicated insertion is another possi-
bility. A common method is the so-called half-field scheme. By halving the bending kick, a
forced dispersion oscillation is launched around half of the FODO value. After a half wave-
length, both D and D' are brought to zero.

To illustrate the principle, we consider suppressing the dispersion in M FODO cells. Start-
ing from a zero-dispersion point (s = 0) where D = D' = 0. The dispersion after M cells can
be written as

D(ML,) = S(ML,) /0 C i((j))ds—C(MLc) /0 c i((z; ds (8)
D'(ML,) = S'(ML,) /0 c i((j))ds—C’(MLc) /0 C%ds (9)
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Figure 12: Dependence of Courant-Snyder functions on the phase advance per FODO cell.
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Figure 13: Schematic layout of half-field dispersion suppressors when the betatron phase
advance per FODO cell is 7/2.

where C, S, C', S" are components of transfer matrices from point 0 to s,

_ [ C(s) S(s)
o = (&) 50 )
@(cos Ap + «(0) sin Ap) B(s)B(0) sin Ap
5(0)
) _1+ a(()) (S) in Au a(()) a(s) 0s A p(0) cos Ap — a(s)sin A
OO \/7 7 S)( p—afs) | fo))
and
C(ML;) S(ML)
M(ML0) = < C'(ML,) S'(ML,) >
( cos(M i) B(0) sin(M pec) ) (1)
—B710) sin(Mpu.) cos(Mp.)
The condition D' = 0 after a half-wavelength oscillation is satisfied if
M:U’c =7 (12)

That is, the dispersion can be suppressed by 7/u. FODO cells. If the arc phase advance per
FODO cell is p, = /2, then 2 FODO cells are needed, as shown in Figure 13. A half-field kick
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can be realized either by using half-field dipole magnets for bending, or by simply omitting
the dipole magnet in one of the two FODO half cells. The later arrangement maximizes the
usable dispersion-free drift space.

Table 3: Examples of half-field dispersion suppressors.
Phase advance . Number of suppressor cells M

/2 (90°) 2
/3 (60°) 3
w/4 (45°) 1
37 /5 (108°) 5

2.3.3 Straight

A long, uninterrupted straight section can be realized by a pair of either doublet or triplet fo-
cusing quadrupole packages. The key requirement is to match the Courant-Snyder parameters
« and ( in both the horizontal and vertical directions.

Figure 14 gives an example of realizing one long, and two short straight sections using a
pair of quadrupole doublets. There are seven constraints to be satisfied: «, oy, 3, and 3, to
match the corresponding values of the arc, zero value of o, and «, to ensure lattice symmetry,
and the specified horizontal phase advance. The adjustment in horizontal phase is often
needed in a compact ring without dedicated phase-adjustment section, since the dispersion
suppression in the horizontal direction often demands a specific phase advance in the arc and
suppressor cells.

In this example, there are seven adjustment parameters available for matching: quadrupole
strength of the two doublet quadrupoles, the strength of the quadrupole at the boundary
between the straight and the arc (or dispersion suppressor), and the distance between them.

An alternative is to use a pair of quadrupole triplets instead of doublets. In this case,
the matching becomes much easier. However, additional number of quadrupoles, quadrupole
strength, and tunnel space is needed to accommodate the arrangement.

In the actual design of the SNS ring, the doublet-pair scheme is chosen, with distance [
made to be zero to simplify the vacuum chamber design. The 3, and (3, is also constrained
to a certain range (about £10%) to provide adequate acceptance for injection and extraction.
Operationally, the entire ring is tuned by 5 adjustable quadrupole settings (2 for the arc, 1
at the boundary, 2 in the straight). The 2 quadrupole families in the arc locks horizontal
phase to /2 per FODO cell while provide vertical tune adjustment, and the 3 straight and
boundary quadrupole families provide horizontal tune adjustment while optimizes matching.

2.3.4 Working point selection

Although a wide tuning range is needed to provide operational flexibility, a nominal set of
horizontal and vertical tunes (working point in tune space) is usually determined during the
design stage, based on which detailed design evolves. Working-point selection is usually based
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Figure 14: A dispersion-free straight section created by a pair of quadrupole doublets.

on minimizing lower-order, structural, and /or easily excited (e.g. by space charge) resonances,
and on avoiding possible instabilities.

Problem 2.1 Evaluate the peak dispersion in both the FODO and DOFO achromat dis-
persion suppressor arrangements ...

2.4 Acceptance

For new rings, the linac-ring transport is usually designed to clean linac beam halo, prevent
source and linac malfunction, and reduce injection activation. Transversely, foils can be used
for H™ scraping. Longitudinally, an achromat bend is often used to create dispersion for
energy tail cleaning.

Any beam halo and tail generated in the ring can be cleaned with high efficiency using
two-stage collimation systems [12]. Momentum cleaning can be achieved in several ways:
(1) injecting at a high-dispersion region and collecting at 180° phase advance downstream
(ISIS, ESS [11]); (2) scraping at a high-dispersion lattice location (JJP [9]); and (3) using a
beam-in-gap (BIG) kicker (SNS [13]). To reduce activation at extraction, the beam in the gap
needs to be cleaned either during the initial ramping for synchrotrons, or with BIG kickers
for accumulators.

Efficient beam collimation and low beam loss requires an adequate clearance between
the beam core and the vacuum chamber limit. Typically, an admittance-to-emittance ratio
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Figure 15: Schematics of the transverse aperture and beam amplitude.

of at least 2 is needed. Momentum collimation using the BIG kicker requires an adequate
momentum clearance so that particles can reach the gap without loss.

2.4.1 Transverse acceptance

The transverse admittance is usually defined as the phase space area associated with the largest
betatron ellipse that the accelerator accepts. Here in this course, we define the acceptance of
the ring in a more general sense addressing not only the finite emittance of the beam, but also
the closed-orbit deviation corresponding to a non-zero momentum spread, the design closed-
orbit deviation at special region like injection and extraction, the closed-orbit deviation due
to magnet alignment errors, and the dynamic acceptance reduction due to nonlinear magnetic
errors. Furthermore, to simplify the discussion of beam collimation, the acceptance here refers
to the physical aperture of the machine set by generic components like magnets, vacuum
chamber wall, and RF cavities, not including dedicated loss-control components like scrapers
and collimators.

We express the transverse displacement in terms of betatron oscillation component g,
dispersive closed orbit z,, and other closed orbit deviation z,

T =15+ xp, +x. = als)cos[t)(s) + ¢o] + D(Ap/p) + . (13)

The betatron admittance is defined as the minimum value of a(s)/\/3(s) allowed by the
accelerator aperture for a specified momentum (Ap/p) at design closed orbit x. across the
entire circumference.

Transverse emittance The transverse emittance e is defined as the (z, z') phase space
area associated with the betatron ellipse of a certain collection of particles (rms, 90%, 99%
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...), as
e = yz? + 20z’ + Ba’” (14)
For a Gaussian distribution with density distribution in x normalized as
exp (—2?/20?)
= Toro

In terms of the rms value 0?/3, the emittance € is associated with the fraction F' of the
particles as

n(z)

(15)

€
o*/8

Table 4 lists some commonly used emittance definition.

— 2In(1- F) (16)

Table 4: The fraction F' of a Gaussian beam associated with various definitions of the emit-

tance.
e [0?/B] F (%)
15
87
95
99

O O =

Under the adiabatic condition of acceleration, the quantity

% xdp, = constant (17)

is a constant of motion. Since the transverse momentum component p, is related to the
longitudinal momentum component p by the relation p, = px’, we have
1 1
€X — X — (18)
p By

Both the horizontal and vertical (unnormalized) emittance values decrease with energy during
acceleration. Thus, injection is usually one of the most critical time when beam loss occurs.
The normalized emittance defined as

ey = Prye (19)

is a constant of motion during acceleration in the absence of diffusion and dilution. Preserva-
tion of the normalized emittance is usually a measure of machine performance. The complete
uncoupled betatron motion can be expressed as

1/2
25 = (enB(s))? (%) cos[ip(s) + gl (20)
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Figure 16: Phase space mapping from turn to turn in a circular accelerator.

Momentum-dependent closed orbit For off-momentum particles, the closed orbit devi-
ation is given by

2, = D(p,s) =L (21)

The dispersion D(p, s) is a function of both the momentum Ap/p and location s. Typically
at high-dispersion locations like bending section, the vacuum chamber is widened to accom-
modate the off-momentum beam trajectory. Bending in the vertical direction is often avoided
or carefully compensated to eliminate vertical dispersions.

The fractional circumference change for off-momentum particles is

ac _ ifD(S)dS% _1lap (22)
¢ Co PP VP Do
The slip factor 7 is
1 1 D 1
_ 1 1 _ D 1 23
TRy <p> 72 (23)

Injection and extraction closed orbit Injection and extraction regions are often high in
radio-activation due to possible system malfunction. In these regions, the closed orbit is often
manipulated to achieve injection painting and to facilitate extraction. Extra clearance must
be reserved to accommodate easy-occur malfunction (e.g. extraction kicker misfire), and to
accommodate various injection and extraction schemes.
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Error-induced closed orbit deviation Deviation in dipole magnetic guiding field produce
deviation in the closed orbit of the accelerator. A common cause of such steering error is the
misalignment of quadrupole magnets. The closed orbit deviation z.(s) at a location s produced
by dipole kicks §; = B;L;/Bypy at location s; is expressed as

Z VB(5)8; cos|ih(s) — (s;)| — wv] (24)

2 sin Ty

where v is the transverse tune, and 1 is the phase advance. Contributions from steering errors
is a linear superposition.

Dipole correctors are usually designed to reduce the closed orbit deviation. The effective-
ness of the correction depends the arrangement of the beam position monitors (BPM) and
the correctors, as well as the scheme itself.

Beta beating Deviation in quadrupole magnetic focusing field AK; = 38%/B0p0 produces
distortion in § function, and effectively reduces the admittance. The distortion Aj is given

ABB(S) - QSiIilQm/ ZB(S)AKiLi cos[2|¢(s) — Y (s;)| — 2mv/] (25)

Due to  modulation, the superposition is nonlinear.
For off-momentum particles, the 3 distortion exists even for a linear lattice consists of only
dipoles and quadrupoles. This “natural” perturbation can be estimated using the relation

1 ds R
v=oo Ezﬁ (26)

where R = C'/27 is the average radius of the accelerator, and () is the average amplitude
function. Recall that the chromaticity £ is typically equal in value but opposite in sign to the
tune v, we may estimate the average distortion as

<5(p75)—5(p075)>%_ﬂ:_§% Ap (27)

B(po, s) v vop p

which is typically of the order of 1%. On the other hand, local off-momentum distprtion
depends crucially on the matching of on-momentum lattice. Furthermore, nonlinear elements
like the sextupole magnet effectively changes focusing for off-momentum particles, and thus
can introduce significantly distortion if not well balanced and compensated.

Dynamic aperture Nonlinearities contributed from magnetic fields of sextupole and higher
order introduce complications in particle motion, and can effectively reduces the acceptance
of the machine. Computer tracking is often used to determine the actual impact. As a general
guideline, a relative field error of below 10~ is often needed to assure a stable particle motion
for a relatively long period.
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Collimation aperture Beam collimators are not all-around black-body absorbers, but
rather devices that can reduce particle’s energy and enhances their betatron oscillation at
certain direction of the phase space. The function of collimation requires additional aperture
to contain the excited particle motion, and to collect them in multi-turns without hitting the
rest of the machine aperture.

Hardware clearance Finally, clearance must be reserved on possible intruding septa, elec-
trodes, beam-position-monitor devices, vacuum bellows, and so on.

2.4.2 Longitudinal acceptance

The longitudinal admittance is usually defined as the phase space area provided by the radio-
frequency system containing the bunch. The longitudinal or momentum acceptance of the
machine here refers to the minimum momentum deviation allowed by the physical aperture
of the accelerator for a specified transverse emittance.

RF bucket In terms of the canonically conjugated variables of RF phase ¢ and energy
W = AFE/hws, the stable phase space area provided by a single-harmonic RF system of peak
voltage V' and harmonic A is

_16R [eVE,
B he \) 2000

K(9s) (28)

where 0 < k(¢;) < 1 is the ratio of the area of the bucket with a synchronous phase ¢, to the
area of the stationary bucket (the one with ¢, equal to 0 when below transition and 7 when
above),

max.(m—ds,pe ) L

with ¢, the solution of the transcendental equation

COS e + P 8in oy = (T — ;) Sin s — €OS Ps. (30)

For a rapid-cycling synchrotron, the synchronous phase ¢, needs to be quickly increased from
0 at injection to a finite value for fast ramping. The subsequent reduction of the bucket area
is a common cause of heavy beam loss at initial ramping.

Momentum acceptance Evolution of momentum and phase deviation can be described
in terms of the longitudinal amplitude function ;. With a normalized time dr = kdt,
k = qeV| cos ¢s|/2mh, the longitudinal motion is described by a Hamiltonian

H(p, J;7) =+J /61 (31)
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Figure 17: Schematics of the longitudinal RF bucket admittance and accelerator momentum
acceptance. The particles circulate in the phase space counter-clockwise below transition
energy.
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The action-angle variables (¢, J) are related to the rf phase ¢ and W = —AE/hw; by

Ap = F+/2J/Br(sin ¢ + ar cos p)

W = —\/2JfFpcosy

where the upper (or lower) sign is for below (or above) vr, ap = —f37 /2, and ' denotes the
derivative with respect to 7. The amplitude function [y, is given by

_ 2mhRwing
eV cos s B 32

1 1
5&6% - Zﬁg +Kp; =1, K (32)

For a constant + near transition,

B _ T 2 2 ~
. L)+ N ()] 158 - 115a

where y = 22%/2/3, = |At|/T,, and At is the time delay from 7. The longitudinal particle
motion is non-adiabatic within a characteristic time £7, near transition energy vyr,

“ = \ eV cos [ yhe?

where the subscript s denotes the synchronous value. The synchrotron frequency is Q, = kg; "
The maximum excursions in ¢ and W are

b =/2vJ, and W =+/23.J (34)

where 1 + a2 = f(rvy.. For a bunch of rms bunch area S = 2w (J), the rms phase and
momentum deviations at vy, are

65 =0.52(S/kT,)"? and 65 = 0.70hw, (kT,S)"* / E,B2. (35)

The momentum acceptance of the accelerator determined by the physical machine aperture
is usually designed to be larger than the maximum momentum admittance of the RF bucket
during the entire acceleration cycle. The limiting locations are usually at the high-dispersion
area. In addition, momentum-dependant effects, e.g. resonance due to chromaticity, chromatic
effects at transition crossing, limit available acceptance. Compensation schemes are often
designed to allow a large momentum acceptance.

2.5 Collimation and Collection
2.5.1 Transverse collimation

Collimation of an ion beam containing un-stripped electrons is often performed with adjustable
stripping foil scrapers to change the charge state of the particle, and then with collecting
devices (shielded collimator block or beam dump) for collection after the scraped particles’
trajectory deviates significantly from the un-stripped beam under guiding magnets. Figure 19
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Figure 18: Longitudinal amplitude function. The time x = 0 represents transition crossing.
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Figure 19: Schematics in normalized phase space of ion collimation with two pairs of scrapers
located with a phase advance of /2 apart.

shows such a scraping action using two pairs of scrapers location at a betatron advance of /2
apart. For the convenience of discussion, we use normalized parameters

X dX  ax+ p2
X = —, X’ = = 36
Ve dp VB (36)
in terms of the phase variable
S dSI
1(s) = — 37
(s) 5 (37)

The escaping radius must be less than the acceptance of the accelerator to avoid uncontrolled
beam loss.

Collimation of fully stripped particles like protons is usually performed with thin scrapers
and thick collimators of solid material. The collimation efficiency is usually not limited by
particles that traverse the collimator, but by particles that are out-scattered from the side of
the collimator block. The amount of out-scattering depends crucially on the impact parameter
(distance of impinging point of incident particle from the edge of collimator), as illustrated in
Figure 20.

In order to raise the collimation efficiency, a two-stage scenario is usually preferred: a
thin, primary scraper that scatters the incident particle to enhance their impact parameter
upon collection by secondary collimators, as shown in Figure 21. The system can consist
of several pairs of thin, adjustable scrapers (a few centimeters) approaching the beam in
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Figure 20: Angular distribution of the out-scattered and transmitted beam upon a collimator
block. The incident beam has a uniform impact parameter distribution both in distance and
angle just inside the edge of the block.

different directions, and then several thick (several meters) collimators to fully stop the scraped
particles. The length of the scraper depends on the beam energy and is an optimization
between energy loss and multiple Coulomb scattering. The length of the collimator depends
on the stopping distance of the particle which again is a function of the beam energy. Since
the transverse collimation is usually done at dispersion-free region, the effect of energy loss in
the scraper is usually not critical to the first order.

Figure 22 shows the collimation mechanism in the normalized phase space. With the
primary scraper at a distance A away from the beam center, and the secondary collimators
at a distance A + H away from the beam center, the optimum phase advance is given by

A
—1
= CoS , and =7 — 38
H1 ( Ar H) H2 H1 (38)

The actual efficiency of the collimation system depends on the design of the accelerator
lattice to accommodate the optimum arrangement of the collimation devices. Figure 23 com-
pares the one-pass collimation efficiency in a FODO straight section with 7/2 phase advance
per cell, and in a doublet long drift with less-constraint phase limitation.

2.5.2 Momentum collimation and beam-in-gap cleaning

The momentum tail of injected beam, if not cleaned before injection, needs to be collected
upon injection to avoid uncontrolled beam loss. The beam gap as well as possible momentum
halo generated in the ring needs to be cleaned to assure a clean extraction. For rapid-cycling-
synchrotrons, momentum and gap cleaning can be relatively easily done upon initial ramping
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Figure 21: Schematics in normalized phase space of ion collimation with two pairs of scrapers
located with a phase advance of 7/2 apart.

using the collimators. Methods proposed or used for longitudinal cleaning include momentum
tail collection, beam-in-gap kicker cleaning, and momentum collimation.

Momentum tail collection The beam upon injection often carries a negative momentum
tail due to linac output and energy loss at injection foil. This momentum tail can be collected
at a distance of betatron phase m downstream of a high-dispersion injection region. This
practice has been crucial to the operation of the ISIS synchrotron.

One possible problem of this scenario is the coupling of horizontal and longitudinal particle
motion when injection painting is executed.

Beam-in-gap cleaning Various mechanisms, including chopper inefficiency and foil ioniza-
tion, can produce a residual beam between micro bunches, resulting in uncontrolled loss at
extraction. A gap-cleaning kicker is designed to resonantly excite coherent betatron oscilla-
tions, driving the gap beam into the primary collimator, where beam loss is measured with a
gated fast loss monitor. Complete cleaning of a gap particle needs to by performed in a time
much shorter than the synchrotron oscillation period. The process can be complicated if tune
spread of the gap particle is large.

Momentum collimation Momentum tail and halo collection can be performed by placing
collectors at locations of highest dispersion. The high-dispersion drift space needs to be long
enough to accommodate the length of a shielded collector.

Two-stage momentum collimation is possible but needs careful consideration. The momen-
tum scraper needs to be placed at high-dispersion region. Upon scraping, particles of original
positive momenta (Ap/p > 0) will lose energy, resulting in a reduced transverse displacement
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Figure 22: Schematics in normalized phase space of a two-stage collimation with one primary
scraper and two secondary collimators located with a phase advance according to Figure 21.
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Figure 23: Comparison of collimation inefficiency between the previous all-FODO lattice
(upper curve) and the present hybrid lattice (lower curve). The inefficiency is defined as
the number of halo particles escaping the collimation system after one turn above a given
amplitude.
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Figure 24: Schematic of the SNS ring collimator showing layers of material for radio-activation
containment.
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Figure 25: Collection of injection off-momentum tail by injecting at a high-dispersion region.

Figure 26: Clearing of stray beam bunches in the National Synchrotron Light Source at the
Brookhaven National Laboratory (courtesy R. Nawrocky et al).
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Figure 27: Momentum collimation or collection at high-dispersion region.

due to excited betatron motion and the decreasing dispersion. These particles may escape the
secondary momentum collimators and return to the beam core. Particles of original negative
momenta (Ap/p < 0) will further lose energy, resulting in an enhanced transverse displace-
ment to be collected by secondary collimators possibly located also in a high-dispersion region.
A lattice design that satisfies the practical conditions can be challenging.

Problem 2.2 Derive Equation 38 ...

2.6 Injection and Painting

Injection refers to the transfer of beam either from a linear to a circular accelerator, or from
a circular to another circular accelerator. The design goal is to achieve that transfer with
little beam loss and with either a minimum or a controlled dilution of the beam emittance.
A successful injection requires the fringe field of the septum and subsequent magnets to be
at an acceptable level, the kickers to have a field profile within tolerance and a rise and fall
time within a defined fraction of the revolution period, and the RF system to be capable of
containing the transient beam loading.

2.6.1 Single-turn injection

Single-turn injection is performed with a septum (dc) and a kicker (ac) located with a betatron
(usually horizontal) phase advance of Ay preferably near 7/2. The injecting beam profile must
be matched to the accelerator lattice to preserve the emittance.

Longitudinally, matching implies that the frequency of the RF system must be synchro-
nized, and that the aspect ratio between energy and phase spread matches as much as possible
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Figure 28: Schematic layout of a single-turn injection system.

to the intrinsically nonlinear RF bucket. Since injection is usually performed at a “flat bot-
tom” without net acceleration, the matched phase-space ellipses are always upright. Matching
can be simply done by proper adjustment of the RF frequency and voltage.

Transversely, matching implies that the injected beam must be kicked to the closed orbit
of the ring, and that at the exit of the septum the Courant-Snyder parameters of the beam

ﬂ, Oy, Dma D;;

must be identical to those of the ring lattice. The closed-orbit matching can be conveniently
analyzed using the normalized phase space. At the septum exit, the x and 2’ needs to satisfy
Xl
cot Apiy = - o t' = —(ay + cot Apy)x (39)
The amount of deflection # from the kicker is related to the displacement x at the septum exit
as

=X/sinApy or 0= - (40)

V ﬁsepﬂkick Sin A,U/x

The optimum condition is achieved with Ay, = 7/2 with

T QT
= ——=—, and 2’ = —

V ﬁsepﬁkick , ﬁ:v

2.6.2 Conventional multi-turn injection

Multi-turn injection is often used to increase the beam intensity in the ring. Conventional
multi-turn injection employs a septum and a programmed orbit bump, usually in the horizontal
plane in a non-dispersive region. The injection efficiency can be optimized by a specific
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Figure 29: Schematics in the normalized transverse phase space of single-turn injection.

mismatch. Let Courant-Snyder parameters and emittance for the injected beam be (5;, «,
€;), and for the ring (8, «, €); Let input beam center relative to instantaneous injection orbit
bump be (x, 2'). Then the conditions are

B a (e 1/3‘a_ai_ x
ima=(0) 5= )

The number of injection turns is optimized by adjusting fall of the beam bump. According to
Liouville’s theorem,

e < ne; (43)

Typically, the ratio €/(ne;) is around 0.5.

2.6.3 Charge-exchange multi-turn injection

With multi-turn charge-exchange scheme, it is possible to inject a large number of turns to
greatly enhance beam intensity and to control the final beam distribution. The constraints
imposed by Liouville’s theorem on conventional multi-turn injection do not apply since the
stripping of H™ ions occurs within the acceptance of the ring.

The magnetic field must be chosen carefully to prevent premature stripping of both H™
and H° [14]. ISIS/ESS prefers injecting at a high-dispersion region (Figure 31). The lattice
dipole simplifies the injection magnet arrangement and facilitates momentum halo collection.
SNS prefers injection in a zero-dispersion straight (Figure 32). The decoupled longitudinal

47 June 28, 2002



High-Intensity Circular Accelerators Design Topics

Septum

Figure 30: Schematics in the normalized transverse phase space of optimized multi-turn in-
jection.

motion allows independent momentum correction and broadening before injection, and is more
tolerant to linac energy deviation. A long, uninterrupted straight is preferred to contain the
injection chicane, allowing independent lattice tuning. Intentionally mismatched injection can
noticeably reduce the foil hits. Laser stripping [18] has been explored as an alternative but
the required power and efficiency are very demanding.

Transverse painting Transverse painting alleviates the fundamental space-charge limit
and controls the uniformity and shape of the beam profile. Various beam profiles can be
achieved using fast orbit bump or injection steering. Scenario (b) and (c) of Figure 33 ideally
produce uniform density beams but practically are susceptible to halo development. Resonance
correction and decoupling are crucial in preserving the painted beam shape.

Anti-correlated painting utilizes both the horizontal and vertical orbit bumps programmed
anti-parallelly, one with increasing and the other with decreasing closed-orbit deviation (COD)
for the injection point. Ideally, such a painting scheme produces a distribution with an
elliptical transverse profile and a uniform density distribution. Such a distribution can be
also realized by painting in one direction and steering in the other. However, in the presence
of space charge this scheme produces an excessive beam halo during the early stage of painting,
when the beam is narrow in one direction. Also, the scheme requires extra clearance in the
direction of large starting COD amplitude.

Correlated painting using parallel horizontal and vertical orbit bumps produces a rectangu-
lar transverse profile. This scheme has the advantage that the beam halo is constantly painted
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Figure 31: ESS dispersive injection layout.
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Figure 32: SNS dispersion-free injection. Elements shown are the chicane (red), the ring
lattice quadrupoles (blue), and dynamic kickers (yellow H and green V).
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Figure 33: Beam transverse profile of (a) correlated-bump painting (b) anti-correlated bump
painting and (c) horizontal painting / vertical steering.
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acceptance:
4807 mm mrad

correlated-painting:
240 T mm mrad

Figure 34: Schematic illustration of the transverse dimensions in the ring. The green hexagonal
boundary represents the cross section of the dipole vacuum chamber. The brown circular line
corresponds to the minimum aperture in the ring at 4807 mm mrad. The beam is represented
by the red circle for anti-correlated painting and the red square for correlated painting. The
displacement of the beam centroid in the dipole (indicated by the dashed outlines) corresponds
to 1% momentum deviation.

over by freshly injected beam. The main concern is whether the rectangular beam profile can
be preserved in the presence of coupling produced by space charge and magnet errors. For
both anti-correlated and correlated painting, eight fast kickers, four in each direction, are
needed to control the orbit bumps.

Hybrid schemes utilizes closed-orbit bump in one direction and injection-angle steering in
the other direction. Figure 33 shows a scheme of horizontal orbit painting and vertical angle
steering. The four vertical kickers are no longer needed. Instead, a small vertical kicker is
used in the transport line at a betatron phase of m upstream of the injection septum to vary
the injection beam angle. With such a scheme, a challenging issue is that the foil needs to be
supported horizontally to avoid excessive foil traversal and scattering. An alternative scheme
is to use vertical orbit painting and horizontal angle steering. However, the beam needs to be
injected vertically. In both cases, the acceptance of the injection channel all the way up to
the injection dump needs to be designed to accommodate the varying injection beam angle.
Operationally, the reliability of the kicker system upstream of injection must be high to avoid
injection foil miss, dump over-heating, and injection channel activation.

Longitudinal painting Longitudinal painting provides momentum spread required for
beam stability without introducing excessive momentum halo, as shown in Figure 35. With
dispersion-free injection, longitudinal painting can be achieved for linac-to-ring injection by
using an “energy spreader” RF cavity located in the transport line upstream of injection re-
gion, operating at a phase-modulated mode of the linac frequency. In order to facilitate such
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Figure 35: Energy distribution at the injection foil using either an energy spreader or a
conventional debuncher. An energy spreader significantly suppresses the beam tail.

a painting scheme, the output momentum jitter and spread need to be strictly controlled
possibly by an “energy corrector” RF cavity synchronized to linac frequency, located again
in the transport line upstream of injection at an optimized distance from the end of linac to
allow for adequate beam-phase slippage and thus moderate RF voltage.

Transverse-longitudinal coupled painting High-dispersion injection couples horizontal
and longitudinal beam painting. Instead of introducing an injection “chicane”, the bending
magnet is itself part of the ring base lattice. The injection layout is clean without the injection
septum, various chicane dipole magnets, and four horizontal kickers. Instead, however, the
long, low-field injection dipole is repeated at every lattice super-period.

This scheme has the advantage of facilitating momentum-tail collection upon injection.
The main disadvantage is the lack of independent control and adjustment in the transverse
and longitudinal distribution. The incoming beam momentum spread and jitter must also be
strictly controlled.

2.6.4 Other novel injection schemes

Other novel injection schemes include resonance injection, radio-frequency stacking. and
beam-cooling stacking, although the process is often slow to accommodate a high repetition
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rate. Schemes presently under research and development for high-intensity beams includes
laser-stripping and plasma-stripping injection.

Problem 2.3 Evaluate possible painting with steering in both planes ... Discuss advan-
tage and disadvantage in comparison with orbit-painting/angle-steering hybrid schemes and
correlated /anti-correlated schemes ...

2.7 Longitudinal Beam Capture and Ramping

During initial beam capture and subsequent energy ramping, heavy beam loss often occurs.
For multi-turn injection, although in principle even a dc beam can be captured longitudinally
when the condition of adiabaticity is satisfied

1 dQ,
Q2 dt

<1 (44)

in practice the beam loss is often excessive. Beam pre-chopping is commonly performed before
ring injection at a low energy.

The bunching factor can be enhanced when RF systems of two or more different frequencies
are used. Figure 36 shows the longitudinal phase space of a dual-harmonic RF system at a
stationary state. The maximum achievable bunching factor is about 0.5 for an accumulator,
and about 0.35 for a RCS. Techniques employing wide-band cavities (barrier cavity) have also
been successfully demonstrated to increase beam intensity [20].

Beam loss at initial ramping is usually associated with the reduction of the stable RF bucket
phase-space area when the synchronous phase is increased from zero at injection (when below
transition) to a finite value in a short time. Both the RF voltage and the synchronous phase
need to be carefully programmed to ensure a monotonically increasing bucket area.

Acceleration is typically achieved with ferrite-loaded RF cavities. At a frequency of MHz
range, the acceleration gradient is of the order of 10 kV/m. The space required for the
installation of a high-voltage (typically several hundred kV) RF system can be significant for
an RCS. Cavities using Magnetic Alloy material [21] have been successfully tested at AGS to
achieve a gradient of 50 kV/m. The use of IGBT power supplies allows magnet ramping to
be programmed, reducing peak ramp rate and current-induced imperfections.

Conventionally, the ring vacuum chamber is either made of metal pipe or is directly at-
tached to magnets (FNAL Booster). For rapid cycling synchrotrons, the vacuum chambers
need to be RF shielded to give high impedance to the eddy current but low impedance to
the image current. Possible candidates are ceramic chambers with (1) sustained metal wires
following the beam envelope (ISIS), (2) printed, internal silver wires (KAON factory [22],
SNS RCS [23]), (3) external shielding and internal coating (JJP), and (4) extra thin Inconel
chamber (FNAL PD).
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Figure 36: Longitudinal phase space at the end of 2 MW beam accumulation. The blue curve
outlines the RF bucket. The vertical lines delineate the edges of a 250 ns gap. The effects of
space charge and cavity beam loading are included.
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Figure 37: Ring extraction layout and orbit. The beam is kicked vertically by fourteen kicker
modules and extracted horizontally by a Lambertson septum magnet.

2.8 Extraction

Extraction is in general a reverse process of single-turn injection. The kick needed is again
given by
x

0= (45)

v ﬂsepﬂkick sin A,U/

where the optimum phase advance between the kicker and the extraction septum is 7/2.

Extraction is usually an area of heavy radio-activation. In newly designed rings, multiple
lumped kickers are used so that beam loss is tolerable when one kicker fails. The pulse
forming network is often installed outside of the ring tunnel for easy maintenance. In the
case of spallation applications, the phase advance is also chosen so that the beam position on
target does not change with kicker failure. In accumulators, cleaning the beam gap with the
BIG kicker further reduces uncontrolled extraction loss.
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2.9 Magnet System

An accelerator typically consists of dipole magnets for bending, quadrupole magnets for fo-
cusing, and sometimes sextupole magnets for chromaticity adjustment. Magnetic correction
system typically consists of normal and skew dipole correctors for closed-orbit correction, nor-
mal quadrupole correctors for f-wave matching, skew quadrupole correctors for transverse
decoupling, and nonlinear (sextupole, octupole ...) correctors for resonance compensation.

Figure 38: Arc bending dipole magnet of the Spallation Neutron Source accumulator ring.

Magnetic errors produce beam orbit deviation, coupling, tune spread, and resonance ex-
citation. For rapid cycling synchrotrons, the leading sources are ramping eddy current and
saturation. Ramp rate and peak field need to be moderated, and ramp-dependent corrections
need to be implemented to control orbit and coupling.

Accumulators are only susceptible to geometric errors. The leading error components are
those allowed by magnet symmetry, and can usually be corrected locally by magnet pole
shaping and shimming [25].

Contributions from magnet fringe fields is important for rings of large acceptance and
moderate circumference. The relative impulse is approximately equal to the ratio between
beam emittance and magnet length [26], which can be corrected by multipole correctors [27].

Chromaticity control is essential for rings operating above transition energy. For rings
operating solely below transition, chromatic sextupoles, especially powered in multi-family
preserving lattice symmetry, offer tune spread control, instability damping, and off-momentum
optics matching. The SNS ring uses four-family chromatic sextupole magnets located in
high-dispersion regions, complemented by resonance correction sextupole windings located in
zero-dispersion regions [28].

Resonance correction has been used successfully on several machines including CERN PS,
AGS and AGS Booster. At the AGS Booster, resonance correction up to normal and skew
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sextupole has been essential during high-intensity operations (Figure 40) [29].
Neglecting the fringe field and longitudinal components, the magnetic field in a magnet
can be expressed using a multipole expansion

B, +iB, =By Y (by + iay)(z + iy)" (46)

n=0

For practical convenience, the primed unit is often defined as

> r+iy\"

B, +iB, =10"*B, nz;(b; + ial) ( Rtj) (47)
where By is the nominal guiding field for a dipole, and is equal to Gy R,.s for a quadrupole
of gradient Gy. The reference radius R,.; is often called the “good-field radius”, chosen to
specify the extend of the beam. Multipoles allowed by a dipole symmetry are dipole, sextupole,
decapole, and so on; multipoles allowed by a quadrupole symmetry are quadrupole, 12-pole
(do-decapole), 20-pole, and so on.

Table 5: Integrated quadrupole end field from one magnet end before pole tip end shimming,
extracted from a 3D TOSCA calculation (normalized to 10~ of the main field at the reference
radius Ryprer). For regular ring quadrupoles, R, = 10 cm; for large ring quadrupoles,
Rt = 12 cm (approximately 92% of the quadrupole iron pole tip radius).

n Normal Skew
(bn) 0(bn) (an) olan)
2 04 - 0.0 —
3 0.1 - 0.0 —
4 0.7 - 0.0 —
5 121 - 0.0 —

2.10 Radio-Frequency System

The main purpose of the RF system is to maintain a 250 ns gap for the rise of the extraction
kicker. It will also (i) control the peak beam current to prevent space charge stop-band
related losses, and (ii) maintain a large momentum spread to prevent coherent instabilities.
This momentum spread will also Landau damp coherent quadrupole oscillations which can
drive halo formation. Compared with a single harmonic RF, a dual RF system has significant
advantages. A barrier bucket RF system maybe even better, but issues such as beam loading
still need to be resolved.

The SNS ring will have a dual harmonic system with peak RF amplitudes of 40 kV for
harmonic h = 1 and 20 kV for h = 2. Canonically, the voltages are phased so that the small
amplitude synchrotron frequency vanishes. The design of the RF system and power amplifier
are driven by beam loading requirements. The power amplifier is designed to fully compensate
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Figure 39: Correction magnet of the Spallation Neutron Source accumulator ring.
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Figure 40: Increase of beam survival with sextupole resonance correction in the AGS Booster
(x: 10 ms per box; y: 2x10' ppp at flat top, courtesy C. Gardner).
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Table 6: Expected magnetic errors of ring quadrupoles. The multipole strengths are normal-
ized to 10~ of the main field at the reference radius Ry ef.

n Normal Skew
(bn) o(bn) (an) o(an)
Body [unit]
2 0.0 -2.46 0.0 -2.5
3 0.0 -0.76 0.0 -2.0
4 0.0 -0.63 0.0 1.29
5 0.20 0.0 0.0 1.45
6 0.0 0.02 0.0 0.25
7 0.0 -0.63 00 0.31
8 0.0 0.17 0.0 -0.11
9 0.70 0.0 00 1.04

Table 7: Expected alignment errors of ring magnets based on the survey measurement of the
AGS Booster magnets and the AGS-to-RHIC transfer line magnets.

Item Value
Integral field variation (rms) 10~*
Integral field, transverse variation (rms) 1074
Ring dipole sagitta deviation 3 cm
Magnetic center position (rms) 0.1 - 0.5 mm
Magnet longitudinal position (rms) 0.5 mm
Mean field roll angle (rms) 0.2 — 1 mrad
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the beam current while providing the quadrature component to drive the gap voltage. As the
beam is accumulated in the ring, a feed-forward system will adjust the input into the low-level
RF drive.

Shown in Fig. 36 are the results of a simulation using a linac bunch length of 546 ns with
the first harmonic voltage ramped from 30 kV to 40 kV over the first 500 turns. The amplitude
of the second harmonic was half the amplitude of the first for the entire simulation, which
included beam loading and longitudinal space charge. The RF was corrected using both feed
forward and low level loops. We note that the full momentum spread (Ap/p) of the incoming
linac beam, after the energy-spreading cavity, is +0.26%. Also, at the end of injection the
beam bunching factor is approximately 0.46.

2.11 Instability Control

Instabilities are commonly observed in proton rings. Head-tail instability was observed near
injection in KEK PS, CERN PS and AGS, and suspected to be due to chromaticity change
caused by eddy current-induced sextupole fields (proportional to B/B) in the vacuum chamber
under dipole magnets. This type of instability can be cured by chamber correction windings
(AGS Booster), chromaticity control, octupole field damping, and tune manipulation. Neg-
ative mass and microwave instabilities are observed at CERN PS, SPS, AGS, and KEK PS;,
and can be cured by impedance reduction measures including shielding of vacuum ports and
septa, increasing the bunch length and reduction in bunch peak density using dilution cavities.
Coupled bunch instability has been observed at CERN PS Booster, PS, SPS, and AGS, and
damped by fast feedback systems and Landau damping systems. [SIS programs tunes in each
cycle to accommodate natural chromaticity variation, space-charge tune depression, and to
avoid resistive-wall head-tail instability [14].

A fast, high-frequency, transverse instability was observed at PSR with both coasting and
bunched proton beams, associated with peak intensity-dependent electron accumulation. The
electron accumulation is associated with secondary emission from the vacuum chamber, and
TiN coating of one straight section suppresses the measured electrons by a factor of about
100. All effective control involves Landau damping [7] (RF voltage and momentum spread
increase, inductive insert, sextupole adjustment, etc.). A similar instability was observed at
ISR and cured by installing more clearing electrodes [34], and at AGS Booster during coasting
beam operation [35].

Impedance minimization is an important measure to prevent instabilities. Improved vac-
uum chamber by-pass is planned at CERN PS Booster, and shielding of magnet septa and vac-
uum ports are underway at CERN SPS. ISIS incorporates RF shielding that follows the beam
contours and smooth chamber transition, collects stripped electrons, and uses low impedance
ferrite extraction kickers.

With the SNS ring, a momentum aperture of 2% is designed for the beam with ~2907rmm-mr
normalized emittance to allow adequate Landau damping. Vacuum chamber steps are tapered,
and bellows and ports are shielded. Chromatic sextupole families are designed for instability
control. A relatively high RF voltage and a gap-cleaning (BIG) kicker help preserve a clean
beam gap. Magnets near the injection foil are specially tapered to collect stripping electrons.
The vacuum chamber’s inner surface is coated with TiN to reduce the secondary electron
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emission yield. Other measures include winding solenoids on straight-section chambers, and
reserving space for future wide-band damping systems [8].

2.12 Diagnostics

The ring accumulation and acceleration is often a dynamic process during which the beam
intensity increases by several orders of magnitude, and the transverse beam radius increases by
more than a factor of 10. The ring diagnostics instrumentation is designed with a wide range
of sensitivity and turn-by-turn capability to monitor beam intensity (beam current monitors),
position (beam-position monitors), transverse and longitudinal profiles (ionization profile mon-
itor, wall current monitor), and beam loss (loss monitor). Dual-plane beam-position monitors
are installed in the critical areas, near the ring straight-section doublets and the middle of the
arcs for orbit monitoring and local decoupling. Any beam residual between subsequent micro
bunches can be detected by a beam-in-gap monitor, and removed by a beam-in-gap kicker.
Electron detectors are planned to monitor the electron cloud in the vacuum chamber. The
controls system is designed to immediately shut off subsequent beam pulses when a critical
device failure is detected.
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Multi-particle effects, such as space-charge, impedence or the electron-cloud are dominating
the dynamics of particles in high-intensity rings. On the other hand, for the safe and successfull
comissioning of the machine, i.e. when the beam current is still low, single-particle dynamics
considerations have to be taken into account. In order to set the basis for a successfull
operation towards the high-intensity goal, linear effects such as orbit, coupling and optics
functions’ distortion, and non-linear ones, such as multi-pole magnet errors and fringe-fields
have to be carefully modeled, measured and corrected. In fact, it is the interplay of these
single-particle effects with the multi-particle ones that severely limit the performance of a
high-intensity machine.

3 Single-Particle Dynamics

3.1 The single-particle relativistic Hamiltonian

The non-linear motion of single particles in an accelerator can be described by the Hamiltonian:

H(x,p,t) = C\/(p - %A(x, t)>2 +m?c? + e®(x,t) (48)

where the vector x = (z,y, z) represents the positions in the Cartesian coordinate system,
P = (Pz, Py, p.) their conjugate momenta, A = (A4,, A,, A,) the magnetic vector potential,
® the electric scalar potential and, finally, ¢ and e the velocity of light and particle charge,
respectively. The Hamiltonian fully describes the motion of relativistic particles in the presence
of electro-magnetic fields and can be derived directly from Maxwell equations through the
construction of the relativistic Lagrangian (see for example [38, 39]). The first squared term
in parentheses inside the square root represents the ordinary kinetic momentum vector

P:fymV:p—EA, (49)
c

with v the particle velocity and v = (1 — v?/¢?)~/2 the relativistic factor. By replacing the
expression (49) in (48) and working out the square root, one can show that the Hamiltonian
expresses the total energy of the particle

H=FE=ymc* +ed . (50)
Note also that, in the absence of electric fields, the total kinetic momentum can be expressed
as:
HZ 1/2
The equations of motions are given by Hamilton’s equations (x,p) = [(x,p), H]', where

the Poisson brackets operation between two functions is defined by:
OF 0G  OF 0G

F G| = —
[ ’ ] zl: dx; Op; Op; Ox; ’

IThe dots denote derivatives in the independent variable, i.e. the time ¢ in our case.
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with the index ¢ running from 1 to the total number of degrees of freedom of the system N
(N = 3 in our case). It is straightforward to verify that the equations of particle motion are
indeed the Lorentz equations:

dP
dt

taking into acount that the magnetic field is B = V x A and the electric field E =V - ®

For circular accelerators, it is useful to use a coordinate system based on a reference curve
defined by the vector ro(s), where s now is the distance along the curve. This reference curve
is defined to be the closed trajectory of a particle with reference momentum P, in the guiding
magnetic field By. For this, a symplectic transformation is applied from the original variables
(x,p) to the new variables (x',p’) = (z,y, S, pz, Dy, ps) through a mixed variables generating
function (e.g. see [40]). The new Hamiltonian takes the form [41]:

_F_e(EJr%xB) (52)

s EAS 2
H(x',p',t) = c\/(px - ZA;,;)2 + (py — EAy)2 + M +m2c? + ed(x', 1) (53)

where A, = (A -§)(1 + = (p-8)(1 + ;7) and p(s) is the local radius of curvature.

Taking into account tiiat the motion, is taking place in a circular machine, it is convenient
to use the path s as the independent variable instead of the time ¢. This is a standard
transformation where the Hamiltonian is defined now by the variable p, as

H= _ps(xa Y, tapxapya _H)

and the new pair of conjugate variables are (¢, —H). If there is no electric field, the new
Hamiltonian is

H=(—p,) = ——A - <1+—> \/——m202 (p x—gAx)Z— (py—gAy)Q . (54)
Assuming that there is no time dependence in the magnetic fields, the Hamiltonian is a
constant of motion. Actually, in a real accelerator, the magnetic fields do change with time
and there are longitudinal electric fields produced by the RF cavities to accelerate the particles
(as in the high-intensity Rapid Cycling Synchrotrons) or to keep constant the longitudinal
bunch length (as in high-intensity accumulators). Most of the times, however, the longitudinal
motion is a much slower process than the transverse one. Hence, the longitudinal dynamics
can be considered well decoupled with respect to the transverse and treated separately.

3.2 Linear betatron motion

Consider now a ring that has only dipoles to bend the particles and quadrupoles to focus
them. Furthermore, let’s assume that the magnetic fields have only transverse components?

2We will see later that this is not true for the field near the magnet edges, which give rise to the so called
fringe-field effects
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and that these components are linear with respect to the transverse variables:

B, = bi(s)y

B, =—by(s) + by (s)x (55)

The main bending field By = by(s) is such that the particle with the reference momentum P,
will follow a trajectory with local radius of curvature, i.e.:

By(s) = : (56)

Py
The constant quantity Bp = “%% s called the magnetic rigidity of the beam (measured in

e
Tesla - m). It is convenient to define also the normalized quadrupole gradient

K(s) = bl(s)c%o = bgz) .

(57)

which has dimensions of 1/m?. By the definition of the magnetic vector potential B = Vx A,
we have that A, = A, = 0 and

Aos) = =20 | (L k9) SR (58)

Thus, the Hamiltonian can be written as:

2

H=(—p)=—P {% + <% - K(s)) = +K(s)y;] - <1 + %) N

(59)

Note that the equations of motion, even with all the simplified assumptions, are still non-linear
in the canonical momenta. The usual step taken is to expand the square root in the above

expression and keep only terms up to the leading order. Introducing the momentum spread
oP P—-PF
5 = — = (
Py Py

that (pz,py) — (p2/P,py/P), we get the new Hamiltonian:

), rescaling the Hamiltonian with P and transforming the momenta such

T — . 1 2 2 0 x 1 1 72 y2
H=(-p/P)=3 (02 +1)) + 5o TTEs KP(SV —K(s)) 5 +K(s)5] . (60)

In order for the expansion to hold, p,,/P < 1, which is true in most of the high-energy
accelerators. However, in low-energy high-intensity machines, as we will later see, the “kine-
matic” higher-order momentum terms should not be neglected as they introduce a noticeable
non-linear effect. Note also that by rescaling the Hamiltonian, the new momentum is just the

slope of the positions , e.g. p, = =

ax
ds
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The equations of motion are now given by

" 1 1 J— LL
R <p(s>2 - K(S)> T TS )

Y+ %MK(S)Z/ =0
where the primes denote derivatives with respect to s. They are independent with each other,
linear in the transverse variables, with periodic coefficients on s with period the circumference
of the ring C'. These are the usual Hill’s equations describing the betatron motion.

It is now useful to make a last transformation which centers the coordinate system on
the closed orbit. The closed orbit for the vertical plane is yo(s) = 0. On the other hand for
the horizontal plane the solution x(s) is not zero, due to the existence of the linear term in
the Hamiltonian which comes from the horizontal bending of the trajectory and the existence
of off-momentum particles. The same would have been the case for the vertical plane if we
have imposed also vertical bending of the trajectory and/or vertical displacement due to other
steering errors. It is useful now to introduce the horizontal dispersion function D,(s) = xq/d.
By replacing the periodic solution to the Hill’s equation describing the horizontal motion we
get a differential equation from which the dispersion can be computed

, (61)

" 1 1
D 1+ 5Kx(S)Dx - op(s)
where we set K,(s) = (1)2 — K(s) and K,(s) = K(s).
p(s

Now we perform a symplectic transformation from the old variables (z, p,) to the new vari-
ables x4, p,s through the mixed variables generating function Fy(x, pys) = ( — %0) (Pus + Pao)-
One can easily show that this transformation just shifts the coordinates origin on the closed
orbit and eliminates the linear term from the Hamiltonian. These are called Legendre trans-
formations and they always preserve the symplectic structure of the system. The equations
of motion have the form:

"+ Ky (s)x,=0 and Y+ Ky(s)y=0 . (62)

which are homogeneous equations with periodic coefficients K, ,(s) = K, ,(s+C). It is worth
noticing that the imposed periodicity by the design of the lattice is usually stronger. By
Floquet theory [42] we know that homogeneous equations with periodic coefficients (61), have
solution of the form:

1 = /A B:(s) cos(vp(8) + tos) and y =/ AyBy(s) cos(1y(s) + 1oy) . (63)

where the Courant-Snyder amplitude function (3, ,(s) is the periodic solution of the equation

Balcl,ly + 4Kfv,y(s)ﬁ;:,y + 2K9,c,y(s)ﬁfv,y = 0 ) (64)
with the additional condition
6%?4 :g,y + (ﬁ;,y/2)2 + K%y(s) 3,3/ =1 ) (65)
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It is useful to introduce the alpha oy, = =@, /2 and gamma v, , = (14«3 )/ 3, functions.
These solutions describe the betatron osczllatwns The quantity A,, is called the Courant-
Snyder invariant and )y, the initial phase. The phase advance is

*odr
vuale) = [ 55 (60

and the tunes:

1 (¢ ds
%5 ), T o0

Note that, in the presence of non-linear terms in the equation of motion the periodic solution
and as consequence the dispersion and the beta functions are not the same and they have to
be recalculated from the full non-linear system of equations of motion.

3.3 Action-angle variables

In the language of Hamiltonian dynamical systems, the Hamiltonian (60) is integrable, i.e.
there exist as many independent integrals of motion in involution (their Poisson brackets
vanish) as the degrees of freedom of the system. In our case, the system has 3 degrees of
freedom, with the one degree being periodic. In the case of integrable Hamiltonians one can
perform a symplectic transformation to the action-angle variables, and the Hamiltonian will
only depend on the actions H = Hy(J;, J,). The actions represent the volume enclosed by the
trajectories in each degree of freedom, i.e. J, = ¢ p,dr. In our case, we use the generating
functions

2 2

Y
25;,;(8)) [tan (¢x +9£E(S)) +am(8)] 263,(3))

[tan (éy + 0y (s)) + ay(s)]
(68)

Fl(xad)xayad)y)‘s) = -

The transformation equations are:

(chos s) + 0:(s))

/ (69)
SIII ¢x (S)) + CYx(S) Cos (¢x(8) + 995(5))]

Bz(s)x' + g (s)x

T

The quantity

0.(s) = —arctan [ — ¢z(s) . (70)

is used in order to have a phase which advances linearly with s. The new Hamiltonian is:
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where R = 27/C' is the average radius of the ring. The equations of motion are

J, = constant J, = constant
- — 50) 72
() = bra(s) + LT (5) = (o) + L) "

and describe a 2-torus in the phase space (¢, ¢y, Js, J,). Solving the new action in terms of
the old variables we have:

1
e = 55

and an equivalent expression for .J,,.

[ + (Ba(5)pa + a()2)°] (73)

3.4 Generalized non-linear Hamiltonian
3.4.1 Transverse field expansion

Up to now, we neglected all non-linear terms in the accelerator, which unfortunately is far
from being true. Let assume again a two dimensional transverse field. In that case one can
apply the theory of analytic functions (e.g. see [43]). From the basic law of magneto-statics
which implies the absence of magnetic mono-poles we have that V- B = 0. It follows that
it exists a magnetic vector potential A such that B = V x A. Because of the fact that we
assumed a two-dimensional field, the vector potential has only one component A,. On the
other hand, the Ampére’s law in vacuum (that is inside the beam pipe) is V x B = 0. Then,
it exists a scalar potential V such that B = VV. Combining the equations defining the vector
and scale potential we have:

v _oa,
or Oy

v _oa,
dy  0Os

B, = and B, = (74)
The equations (74) represent the Cauchy-Riemann conditions for the real and imaginary part
of an analytic function. Thus, we may define a complex potential of x + iy as

o0

Alx +iy) = Au(z,y) + iV (2, y) = Y (kn + idn) (@ + iy)" (75)

n=1

and this expansion is convergent inside a circle of radius |z| = r. which is the closest distance
to an iron yoke or collar where the Eqs. (74) are not satisfied any more and so does the
analyticity of the function. The coefficients «,, and A, can be associated with the normal and
skew multipole coefficients

nk,rt nA\,rtt
bn—l = —T; and Ap—1 — TOO (76)

where ry is the reference radius which is chosen to be the outermost conceivable deviation of
the beam particles (a few cm for the high intensity rings) and By the main field. Thus the
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vector potential component becomes:

bn - ian (ZU + iy)n-l—l

Az(%y) = —Boroﬁﬁez 1 o

n=0

(77)

Note that with this definition, for n = 0 we have the dipole terms, n = 1 the quadrupole,
n = 2 the sextupole, n = 3 the octupole, etc. (US convention).
3.4.2 Derivation of the Hamiltonian

We start from the relativistic Hamiltonian (54). Setting A, = A, = 0, rescaling with P and
expanding the square root up to leading order we get

1 T e
= (—ps/P) = = (p? ) e —— 78
H=(=ps/P) =5 (0% + 1)) 5 P (78)
The vector potential component A; is:
x
As=(A-8)(1+ —
A9+ ) .
x iy
= (1 B n n - \n+1
(1+ —p(s)) oRe nEU T (z +iy)

Now, as before, one may want to center the coordinate system to the closed orbit. Orbit
distortions are produced by steering errors and also by the momentum spread of the beam.
Thus, we may replace x by z3 + D, + x¢ and y by yz + D,d + yo where § = §P/Fy and D,
the dispersion function. Using the generating function Fy(z, pyg, ¥, pys) = (¥ — Dyd — ) pup +
(y — Dy6 — y.)pys. The Hamiltonian takes the form:

M =Ho+ Y hp,p,(s)abyk (80)

K ky

where Hj is the integrable Hamiltonian (60). The terms hy, i, (s) are periodic and depend on
the multi-pole coefficients and the closed orbit displacements A, = D, 0+x and A, = D,6+yp.

3.5 Classical perturbation theory

The Hamiltonian (78) is not integrable. However, if the non-integrable part is small compared
to the integrable, one can expand the generating function and the Hamiltonian and try to
solve the equations of motion order by order. This is the purpose of classical perturbation
theory. The technique was initially developed by Linstead [44] and put in terms of canonical
transformations by Poincaré [45] and Von-Zeipel [46]. A general discussion of the method can
be also found in [47].

First consider a general Hamiltonian with n degrees of freedom and time dependence. After
transformation in the n-dimensional action-angle variables J, ¢ of the integrable system, it
can be brought to the general form

H(J,9,0) = Hy(J) + eH,(J, p,0) + O(?) (81)
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where the non-integrable part H(J, ¢, 0) is 2m-periodic on # and ¢. The motion now does not
take place on tori, as in the case of the integrable Hamiltonian. Assuming that the perturbation
is small, distorted tori still persist the perturbation. One may try then to “straighten up” the
distorted tori, by seeking a transformation in some new action angle variables (J, @), in order
for the new Hamiltonian to be written as a function of the new actions alone H(J). For this

we introduce a near-identity mixed variables generating function

S(J,,0)=Jd-@+eSi(J,p,0) + O(?) (82)

our purpose it to find a suitable representation for S;(J, ¢, 6). The old action, new angle and
new Hamiltonian can be found by the canonical transformation equations:

J e j + 6—651 (g, ,9) + 0(62)
oS (fLP 9) (83)
_ 1\J, @, 2
= —_— O
p=p+e ¥i + O(€%)

Then, we can express the old variables in terms of the new ones by inverting the previous
equations:

J=J+ 500 5
95,7 8,5 ®
¢:¢_6M+0(62)

oJ
Note that S; is now expressed in terms of the new variables. Then the new Hamiltonian is:

9S1(J, ,0)

H(J,@,0) = H(JI(J, @), (], ), 0) + e——;

+ O(€?) (85)
Now, we may expand term by term the old Hamiltonian in the right hand side of (85), in
a power series of €, using the expressions of the old variables as a function of the new (see
Eq. (84)). Hence, we have for each term to leading order in e:

Ho(J (7, 9)) = Hol) + T 05 (;9’;;5’ )\ o@)

eHi(J(J, @), (T, ¢),0) = eH\(J, @) + O(c*)

(86)

Inserting these equations in the expression of the new Hamiltonian and equating the terms of
equal order in €, we get in zero order Hy = Hy(J) and in first order:

H . 851(j7 9579) T asl(ja ()57 9)

1 T+w(J) + H(J, @) (87)

_ OHy(J
where w(J) = 80.;_ ) is the frequency vector of the unperturbed system. Since we made

this transformation in order for the new Hamiltonian H; to be a function of the new actions
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J only, we should try to eliminate the ¢ dependence in equation (87). For this, we introduce
the average part of the leading order perturbation term of the old Hamiltonian H; over all
the angles @:

S R LI (53)

and the oscillating part of H; is defined as:
{H.} = H — (H1)g (89)
Inserting the equations (88),(89) in (87) we have:

95, (J, @, 0)

7 85, (J, @, 0) 3
op

T w(J)-

+ (H(J, @)+ {Hi(J,p)} . (90)

We can now choose S; such that the @ dependence is eliminated, that is

9S1(J, @, 0) 5. 051(J.8,0)

H\(J) = (H\(J,®))s and 2 + w(J) 95

= _{Hl(j7 95)} )
(91)

and now the new Hamiltonian is a function of the new actions only, to leading order in €
H(JT) = Hy(J) + ¢ (Hi(J, @))p + O(c) . (92)

with the new frequency vector

&(J) = 6I;§J ) _ () + ew + O . (93)

The second term in the equation above is the first order correction to the frequency vector.
Indeed, this is true if we are able to solve the second part of (91) and recover the appropriate
generating function term S; which eliminates the angle dependence. To do this, first remember
that the perturbation of the original Hamiltonian H; is a 2m-periodic on # and . The same
should stand for the oscillating part of the perturbation transformed in the new variables.
Hence it can be expanded in a Fourier series

{H,(J,p Z Hyy(J)eik-e+p0) (94)

with k - @ = k191 + -+ + knn. In order to have a solution for (91), the leading order term of
the generating function S;(J, @, 6) should be also periodic on # and @ and can be expressed
as a Fourier series

Z Slk i(k-@+pb) , (95)
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The amplitudes of Si;(J) are the unknowns and we may get them through (91) by equating
same order terms of the two Fourier series:

Su(J) =i Hi(J)

——— ith k 0 96

which gives us the final form of the generating function

- H _
ST, @)=Jd-@+ei Y = wl("J) +pe ik-e100) 1 O(e?) (97)

Now we may substitute the generating function in (84) and get the new invariant actions and
angles.

Sometimes, the first order perturbation theory is not enough, either for computational pur-
poses and the demand for increased precision or because the first order correction associated
to the average of the perturbation is zero (as in the case of a sextupole magnet perturba-
tion in the accelerator Hamiltonian). In principle, the Poincaré-Von-Zeipel method can be
carried out in arbitrary order in €, but the disentangling of the old with the new variables
becomes cumbersome, even for the second order. Modern perturbation methods exist, like the
Lie transformations, where the complete inversion of variables is not needed and the whole
procedure can be done in a completely algorithmic way (e.g. see [48]) employing the power of
computers. These methods were applied for the first time in accelerator dynamics by Dragt
and Finn [49].

The equation (97) is very important to understand the effect of resonances in a Hamiltonian
dynamical system. In general, for any actions J there can be found an integer combinations
of k and p such that the denominator of the Fourier amplitudes is close to zero. These
small denominators prevent the global convergence of (97). Resonances k - w(J) +p =0 do
not only represent a mathematical culprit but have also physical meaning. The phase space
trajectories close to a resonance change their topology and an exact resonance condition
blows up the oscillation amplitude of a particle as in the case of a forced pendulum, where
the frequency of oscillation equals the forcing frequency.

On the other hand, one may try to apply perturbation techniques that take the singularity
to higher order and converge more rapidly at least for some regions of the phase space. These
super-convergent perturbation techniques proposed by Kolmogorov [50] are the basis of the
KAM theory [51] which states that under certain conditions of the Hamiltonian and provided
that the trajectories are far enough from the resonance conditions, we can still find solutions
that evolve on invariant tori. However, due to the severe mathematical restrictions of the
theory, the applicability to realistic physical systems is limited.

3.5.1 Application to the accelerator Hamiltonian - Resonance driving terms

The classical perturbation techniques were first applied in beam dynamics by Schoch [52] and
Hagedorn [53] and it was influenced by the work of Jurgen Moser, who spend some time at
CERN during the fifties. They were finally popularized twenty years after by Guignard [54, 55].
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In order to apply the classical perturbation techniques in the non-linear Hamiltonian used
to describe the motion in a ring under the influence of magnetic imperfections (see Eq. (80)),
we first rewrite the transverse variable in the following form:

xﬁx( ) —1 s K]
2(s) = . (1@ (640:(5)) . il62(5)+02(5))) (98)

and the equivalent expression for y. Then, we may transform the Hamiltonian in action-angle
variables as described in section 3.3. The Hamiltonian takes the form:

(Jwa ¢ma¢y) HO(JmJy) +H1(J:L‘7Jy7¢$7¢y) (99)

where the integrable part is given by (71) and the perturbation is

Hy(Jo, Jy oy byis) = Y J’WJ’WZZ%,M [G=R)det(=m)oy] (100)

kz,ky

with

hkw:k S k k i[(j— s —-m s
gj,k,l,m(S) _ . '+k'—',g-!l—(+—m) <]x> ( ly> ﬁgm/Z(S)ﬂfy/Z(S)e [(i—F)0z(s)+(1—m)By ()] (101)
2

and the indexes j, k, [, m satisfy the relations k, = j + k and k, = [ + m. As the perturbed

part of the Hamiltonian is periodic in the “time” variable s through the coefficients hy, 1, (s),
it can be expanded in a Fourier series so that,

kr kz 00
Hi( S, Jys Gar by 8) = D JEPT2Y NN " gipmype VOOl (102)

kﬂﬂvky J I p=—o0

with

kl‘ k 1 1 i[(j— s —m s =
ik lmp = <j> < ly) Wﬁf kmky( )gkwﬂ( )51;y/2(5)6 [(G=F)0=(5)+(1=m)by () +PR] s
(103)

As shown in the previous chapter, in order to find a generating function which will take us from
the unperturbed action variables to the new ones, we will have to expand it in a Fourier series
which will not be convergent when (j—k&)¢,+(I—m)¢,—p5 = 0. Setting n, = j—k, n, =l—m
and using (72), we have the resonance condition in the unperturbed tunes n,Q, + n,Q, =p
The coefficients g;m; are called the resonance driving terms. One tries to find ways to
minimize them either by changing the magnet design so that the coefficients hy, x, (s) which
come from magnet imperfections are small or by introducing magnetic elements that are
capable of creating a cancelling effect.
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3.6 Tune Shift and Tune Spread

In order to find the first order correction to the tunes (see (93)), we have to compute the
derivatives with respect to the action variables of the average part of the perturbation in the
Hamiltonian. For a given term hy, j, (s)z**y* of the polynomial in the perturbation part (80),
we have that:

ko/2—1 7ky/2 ko ko
gy

0Q, = =—— ¥ Z Zgj’k,l,mfei[(j—k)¢z+(l—m)¢y}dqudd)y
il

472

Jhel2 phy/2=1 ks ke (104)
a Jy

0Q, = L — Z Zgj’k,l,mfei[(j—k)¢z+(l—m)¢y}dqudd)y

472 ,
j I

where §; 1.m is the average of the coefficient g; s m(s) around the ring. It can be shown that
the integral vanishes for k, = j +k or k, = [4+m an odd number. This means that we have to
go to higher order in the perturbation in order to compute the leading order frequency change.
The change of the tunes due the perturbation is called tune shift (or spread) or detuning in the
language of accelerator physics. The computation of leading order tune-shift is very useful for
characterizing the importance of the non-linear effects in an accelerator ring. Typical values
for the tune spread due to different mechanisms in a high-intensity ring are given in Table 8,
taking the example of the SNS.

Table 8: Tune spread produced by various mechanisms on a 2 MW beam with transverse
emittance of 480 7 mm mrad and momentum spread of £1%.

Mechanism Full tune spread
Space charge 0.15-0.2 (2 MW beam)
Chromaticity +0.08 (1% A p/p)
Kinematic nonlinearity (4807) 0.001

Fringe field (4807) 0.025

Uncompensated ring magnet error (4807) +0.02
Compensated ring magnet error (4807) +0.002
Fixed injection chicane 0.004
Injection painting bump 0.001

3.7 The single resonance treatment - Secular perturbation theory

Consider the general two dimensional Hamiltonian H (J, @) = H(Jy, Jo, p1, p2) written in the
usual form:

H(J, ) = Ho(J) +cHi(J, ¢) (105)
with the perturbed part being periodic in angles, so that it can be expanded in a Fourier series
H\(3,0) = > H, b, (J1, Jo) expli(kiipr + ko)) (106)

k1,k1
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A resonance of the form nyw; + nows = 0, with wy < wy will blow up the convergence of the
perturbation series and leads to a secular growth of the solution. In order to remove this
behavior, we can perform a canonical transformation (J, @) — (J, @) so as to eliminate one
of the original actions. We choose the generating function

Fr(ja p) = (nip1 — 7"02902)j1 + 0oy (107)

with the transformed Hamiltonian

A~ A~

H(j,(;O) = Ho(j) +5Hl(ja¢) (108)

ant the perturbation

L A 1 R R

H1 (J, (,0) = Z Hkl,kg (J) exp {n— []ﬁgOl + (kﬂlg + k2711)(,01]} . (109)

1
k1,ko
The relations between the variables are:
Ji = nljl ) Jy = j2 - n2j1 (110)

Y1 = NP1 — Naps P2 = P9

This transformation puts the observer in a rotating frame in which the rate of change of the
new variable ¢; = n;¢; — nyws measures the deviation from the resonance. We can now
average over the “slow” angle ¢ = 5 and to first order we get

H(J, ) = Ho(J) + cHi(J, &) (111)
— ~ ~ ~ +<x> ~
H (3, 61) = (Hi(3,61))p, = > H_pnypny(J) exp(—ip1) (112)
p=—00

The averaging eliminated one angle and thus
Jy = Jy+ J— (113)

is an invariant of motion. Now, assuming that the Fourier harmonics that dominate the
series (112) are the leading ones (i.e for p = 0, £1 and and taking into account that H_,,, ,,, =
H,, ., we get the Hamiltonian

— A

H(J, él) = HO(j) + 6I:IO,O(j) + 25Hn1,—n2 (j) COS @1 (114)

Let jl = jl[) the location of the fixed point inside the resonant island. We introduce the new
variable AJ; = J; — Jyp, which positions the coordinate system on the fixed point. Expanding
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H(J) in the vicinity of the fixed point, we get the Hamiltonian describing the motion near
the resonance

(AJ))?

j1=j10

92 Hy(3)

H.(AJy,0,) = +2eH,, _p,(T) cos ¢y (115)

This is a remarkable result that suggests that the motion near a typical resonance is like that

of the pendulum, with a libration part, a separatrix and a rotation part of the motion.
The libration frequency is as in the case of the pendulum

1/2
(116)
J1=Jio

The maximum excursion A.Jj ;. occurs on the separatrix and is given by the resonance half

width

_ ~ O%H,(J
Oy = 251;[711,,@(‘1)7a 9()
0.J 2

1/2

26Hn1 y N2 (j)

82 Hy(J)
aJ 2

AT} maz = 2 (117)

Ji=J1o
3.7.1 Resonance overlap criterion

The secular perturbation theory is the basis for the Chirikov resonance overlap criterion [56,
57]. In fact, as the perturbation grows, the width of resonance island grows. One can imagine
then that at some point the separatrices of the two islands overlap. This will permit orbits
from the one resonance to diffuse through the separatrices, across the other resonance. Taking
that the distance between two resonances is

o1 _ 1
ni+no n+n

0Ty ot = (118)
82 Ho(J)
72
S P
we get the simple resonance overlap criterion
Ajn mazx T Ajn’ mazx Z 6jn,n’ (119)

Actually the mechanism is much more complicated because of the existence of secondary
islands that tend to overlap also with the main resonance and the fact that the separatrix
when the perturbation is getting bigger and bigger forms a chaotic layer, whose width has to
be taken into account. Considering these two effects, we have the modified criterion by the
“two thirds” rule.

~

~ 2 .
AJn max + AJn’ max Z §6Jn,n’ (120)

However, due to the pure geometrical aspect of the criterion, it is quite difficult to extent it
in Hamiltonian systems with 3 or more degrees of freedom.
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3.7.2 Single resonance treatment for the accelerator Hamiltonian - Resonance
widths

We can apply the secular perturbation theory to the accelerator Hamiltonian (99) (see [54, 55]).
Consider a resonance term n,Q,+n,@, = p, which we suppose is the dominant so as to neglect
the rest of the expansion (102). Then, we have the single resonance Hamiltonian

1 2 kax ky s
H(J:va Jya d)xa ¢ya S) = E(Qx!]x + Qny) + gnx,nyﬁjwz Jy2 Cos(nxd)x + ny¢y + ¢0 - pﬁ) (121)

where g, n,€% = g;1mp. Using the generating function (see (107))

A~ A S A ~
Fr(d)xa d)ya ']:va Jya 8) = (nxd)x + nyd)y - pE)Jx + d)y!]y (122)
we get the Hamiltonian
‘Tl T T (A - jm j 2 N T a Ky »
(. gy o) = PO DI Ty 2 ()% (s )% cos( + 60)
(123)

Thus, we get the two invariants, namely the action .J, and the new Hamiltonian H (see (113)).
Expressing them in the old variables, we get:

JoJy
g =———
Ny N
L J L 5 >
02_(Qx_nx—|—ny) x+(Qy_nx+ny) y T 29nanyJa” Jy COS(”x¢x+”y¢y+¢0_pE) .

(124)

Note that from the first invariant if n, and n, have opposite sign, the motion is bounded.
This of course is a result of a first order approach and it does not apply in general. These
resonances are called difference resonances whereas the ons for which n, and n, have the same
sign are called sum resonances. Setting e = n,Q, + n,Q, — p the distance from the resonance
we can compute the resonance stop band width Ae = n,AQ, + n,AQ,, which yields:
kp—2 ky—2
2

Ae = g”f—}é%Jm Iy 7 (kgngJy + kynyJ,) (125)

3.8 The choice of the working point

Up to know we have not considered a periodicity other than the one coming from the ring
circumference. In the process of the design of the lattice, we usually try to impose a periodic
structure which is stronger than this one. Then, the resonance condition can be written as
Ny Qe + nyQy = p = mN, where m is the super-periodicity of the lattice. One can easily
understand that now the only resonance conditions that can take place are the ones that the
harmonic p is an integer multiple of m. These resonances are called structural or systematic
resonances, because they are the only ones that are allowed by the structure of the lattice. All
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Figure 41: Tune spaces for a lattice with super-period four. The red lines are the structural
resonances and all the black are the non-structural ones (up to 4th order).

other resonances are called non-structural or random. Indeed, it is very important to avoid
the break of the super-periodicity of the lattice which will result in the excitation of these
resonances, e.g. by random errors. The primary concern when choosing the working point for
a high-intensity is to be far from the structural resonances. In Figure 41, we illustrate this by
giving an example of a tune-space of a lattice with super-period 4. Here we plot the resonant
lines only up to 4th order. One can observe directly that the choice of a working point is
much easier if non-structural resonances (black lines) are not excited.

3.9 Linear Imperfections and correction

3.9.1

Steering error, closed orbit distortion and correction

The control of the position of the closed orbit is one of the major concerns in high intensity
rings. The effect of the orbit errors in beam dynamics can be identified directly from equation
of the magnetic vector potential (77), by replacing z and y by x+6, and y+ ¢, and expanding

7
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the polynomials inside the sum. Taking a normal multi-pole of order n, for example, we have:

n/2 n—2k 2k

Anz(x y __b_nzz chlmxn 2k—1 2k ms. l5m (126)

n
k=0 [=0 m=0

where Cy ., = (—l)l(;l) (” ZZk)( ) Note that now the vector potential contains polynomials
in the transverse variables of order 1 to n. In fact, at first order, the orbit displacement will
result to a polynomial of order n — 1, at second order to a polynomial of order n — 2, etc.
This effect is usually called multi-pole “feed-down” and it is most harmful, especially when
an important orbit displacement appears in areas where the associated multi-pole coefficient
is strong.

In order to evaluate the effect of closed orbit distortion in the linear equations of motion

we follow Courant and Snyder [41]. An horizontal or vertical d,, orbit distortion is given by

/ . s+C AB
#@ / BE,T) V By €OS(1TQuy + 0y (5) = Yy (T))dr - (127)

where AB(7) is the equivalent magnetic field error at the location s = 7. Approximating the
errors as delta functions in n locations around the ring, the integral (127) becomes a sum:

Vo =
Oz,ysi = m Z Guyii v/ By COS(TQuy + Vi i — Ve i) (128)

Jj=i+1

Ory(s) = —

where 9§, ,.; is the distortion produced at the location 7 and ¢, ,.; the kick produced by the jth
element. There are several effects that can produce these kicks and displace an orbit from its
ideal trajectory. Typically, we consider errors in the dipole guiding field, random rotations of
the dipoles around the beam axis (rolls), random dipole displacements and finally horizontal
and vertical misalignments of the quadrupoles. For an error in the guiding field of a dipole
AB;j, with length L, the kick is:

AB;L;

5 (129)

¢; =

This will be an horizontal or vertical kick depending on the type of dipole. For the roll of a
dipole the kick is

Bij sin 9]'

5 (130)

¢; =

where 0; is the roll angle. The kick will be horizontal if the dipole is vertical and vice-versa.
A horizontal or vertical displacement Az, y,; of a quadrupole will give a kick in the horizontal
or vertical plane

_ GiLiAz,y,

. 131
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Figure 42: Horizontal and vertical closed orbit rms displacement for 101 error distributions in
the SNS accumulator ring and maximum kicks required for correction (courtesy of C.J. Gard-
ner)

where G is the quadrupole gradient.

In order to correct the closed orbit distortion, dipole correctors are introduced in the
ring lattice. These correctors are able to produce dipole kicks in both the horizontal and
vertical plane. In order to correct the closed orbit distortion, we include the kicks given by
the correctors as unknowns in (128) and try to minimize the expression by a multi-variable
minimization routine (see [58]). This will provide a global orbit correction. In figure 42
we show a typical closed orbit displacement for the SNS accumulator ring and the kicks
needed to correct the orbit. Sometimes, it is necessary to provide a local correction scheme.
A standard method to do so is based on the so called three-bumps: using three steering
correctors producing kicks, we try to produce an orbit displacement which will compensate
the orbit distortion between the first and third corrector. There is also a variant of this method
using four correctors, in order to control both the position and the phase at a certain location.

The determination of the location of the dipole correctors is imposed by the lattice struc-
ture in order to get maximum kicks with minimum dipole fields: horizontal dipole correctors
are placed near horizontal beta function maxima (usually adjacent to focusing quads) and
vertical dipole correctors are placed near vertical beta function maxima (adjacent to defocus-
ing quads). Especially in the injection and extraction sections of high-intensity rings, where
the orbit control becomes critical, the dipole correctors are designed as combined function
magnets able to produce both horizontal and vertical dipole kicks.

In the design process of the ring, the errors resulting orbit distortions are unknown. Sta-
tistical methods are employed, with random distributions of errors with rms values based on
previous experience with existing machines and taking into account the mechanical tolerances
and magnetic field design characteristics of the magnets. For the SNS accumulator ring a
typical value for the error of the dipole field is a few 10~* of the main field. Random dipole
displacements and quadrupole misalignments have a rms value of 0.5mm and dipoles’ random
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roll rms value is about 0.5mrad. For the 1GeV design of the SNS accumulator ring, the inte-
grated dipole field of the arc correctors under design is around 6.7 x 10~* T m which gives the
capability of 1.2 mrad kicks for each corrector. The dipole correctors in the straight sections
are able to produce approximately twice this integrated field and kick, both in the horizontal
and vertical direction.

3.9.2 Gradient error and correction

As already pointed out in 3.8, the preservation of the lattice super-periodicity is essential for
the good performance of high-intensity rings. A lattice with perfect symmetry does not allow
the excitation of resonances other than “structural”. On the other hand, when the super-
periodicity is broken, e.g. by random errors in the magnets, “non-structural” resonances can
be excited as well. The combination of lattice perturbation in the presence of large space-
charge forces in a high-intensity ring, can lead to excessive beam loss. This effect was already
observed [59] and analyzed theoretically [61] in the KEK PS, where a 4th order “non-structure”
space-charge induced resonance was excited, as the super-periodicity was broken due to errors
in the quadrupole strengths.

The direct observable for a broken super-periodicity is the distortion of the tune and
linear optics functions by random and systematic errors in the quadrupole strengths. Another
perturbation of the super-periodicity may be attributed to the injection regions where special
injection devices (injection chicanes) perturbed the perfect lattice symmetry.

In a first order approximation, the shift of the tune due to gradient error 6K, , can be
found by averaging the derivative of the associated perturbation terms after transformation
to action angle variables (see e.g. [41])

Quy = 4= Ba(5)3K, (5)ds (132)

The introduction of a gradient error results to a beta variation at a location s, which at first
order is:

Bry(s) _

1 s+C
By (5) = _m /s Bay(T)0K 3 (T) COS[=2(TQuy + Yy (5) — Yy (7))]dT (133)
where (), is the perturbed tune. In the language of dynamical systems this beta function
variation can be translated as a change in the action variables and can be calculated order by
order with the help of the perturbation methods used above, through a generating function
passing from the old to new action-angle variables.

A gradient perturbation can also excite integer resonances )y, = N and half-integer
resonances 2(),, = N. Following the single resonance theory described in 3.7.2 we can
calculate the resonances width [41] by setting these conditions in equation (103).

In order to compensate these effects and allow a fine tuning of the lattice, quadrupole
strings are mounted on the core of quadrupole magnets and powered independently from the
main quadrupole magnets. These are called TRIM windings. During the design process,
as in the case of the steering error, we estimate a rms error in the quadrupole magnets’
gradients by the magnet design tolerances. Then, we consider random error distributions in
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the quadrupole magnets’ gradient with this rms value and use the TRIM windings in order to
re-tune the lattice to the unperturbed working point by minimizing the tune-shift (132) and
the beta-beating (133).

In order to minimize the integer and half-integer resonance widths, the usual procedure is
to move the working point close to these resonances. Due to the proximity to the resonances,
the beta beating should be significant. In fact, depending to the integer harmonic N of the
resonance, only strings connected in a certain way are able to provide an equivalent harmonic
that can balance out the effect of this resonance. The quadrupole strings are powered than
accordingly in order to minimize this effect. To give an example of the order of magnitude,
the SNS ring quadrupole TRIM windings are able to produce around 1% of the quadrupole
gradient which is of the order of 5 x 1072 T/m, for 1GeV operation.

It is often desirable to have individual power supplies for each quadrupole TRIM winding.
Apart from the evident flexibility in the correction schemes, they can be used in the early
commissioning stages to assist the orbit correction and to allow the beam-based alignment of
the beam position monitors.

3.9.3 Linear coupling and correction

Linear coupling of the two dimensions in the particle motion is characterized by an zy term
in the vector potential. This means that the Hill's equations of betatron motion are modified
to the ones of linearly coupled oscillators. Note that this perturbation as the previous ones
are completely integrable, in the sense that we can still find new action integrals that are
associated with the two degrees of freedom of the system. The problem arises because the
original tunes of the machine are distorted and so do all the optics functions of the uncoupled
lattice, which is mostly dangerous for the safe operation of the ring. On the other hand,
whenever the motion is strongly coupled, instabilities in the horizontal plane of motion can
be “mirrored” to the vertical plane and vice versa. For a Hamiltonian formulation of linear
coupling, one may refer to Ripken [62].

Linear coupling is attributed usually to random rolls in the quadrupole magnets, whose rms
values can be as large as 1 mrad. A smaller contribution comes from random and systematic
skew quadrupole errors in the magnetic elements or offsets in sextupole magnets.

Apart from the linear optics perturbations such as beta and dispersion beating, skew
quadrupole errors can excite the coupling resonances @), £ @), = N. Especially for working
points that are close to a structural coupling resonance, it was found essential that a very
careful correction has to be applied in order to compensate the effect of random quadrupole
rolls [143]. In a quite similar way as for quadrupole errors, the large space-charge tune-shift
pushes the particles in the resonance and the result is a quite steep increase of beam loss.

A way to quantify the coupling perturbation is by the usual classical first order perturba-
tion theory approach. The driving terms associated with coupling resonances in the Fourier
expansions of the perturbing part of the Hamiltonian:

1 .
9+ =% f{ VBB ks (s)eV= 0 (@t @iy (134)

where + stands from the sum and difference resonance respectively and k, is the coefficient
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associated with xy term in the vector potential. For example, in the case of a quadrupole roll
by a rotation angle of ¢ the skew quadrupole strength introduced is k(s) = K(s)sin(25¢).
Note that the driving term is as always a complex quantity and we need two independent,
nobes to correct the contribution for each resonance. Skew quadrupole strings correctors are
placed accordingly around the ring to globally minimize the coupling coefficients. One can also
imagine that a local coupling correction can be achieved by locally minimizing the coupling
coefficients in each cell, especially when it is critical for the good performance of the machine.
This latest scheme is being tested in the SNS ring. In order to save space, the four skew
quadrupole strings per super-period are mounted in the cores of the dipole correctors and
are powered independently in order to achieve a quasi-local correction. To give an order of
magnitude the integrated skew quadrupole gradient of each corrector is about 2.25 x 1072 T

3.10 Chromaticity

We saw that even the linear equations of motion depend on the energy of the individual
partial through the momentum deviation dp/p. This means that for particles with different
energy, the tunes and the other optics functions should be dependent on the particle energy.
The chromaticity function of a ring is defined as the shift of the tune as a function of the
momentum

AQuy
op/p

The chromaticity function can be computed by the first order perturbation theory approach
of Courant and Snyder [41]. In the case of a linear lattice, the natural chromaticity is:

Coy = (135)

1
oy == 4 P By ). (136)

where [, , are the horizontal and vertical beta functions of the ring, K (s) = G/Bp is the ratio
of the quadrupole gradient G along the ring over the beam rigidity Bp and the integration
is along the central orbit of the beam. This chromaticity function is also called the “natural
chromaticity” of the ring. In a synchrotron with a regular FODO lattice and no straight
sections (apart from those included in the FODO cell), the natural chromaticities &, , y are
equal and opposite to the tunes (), .

The control of the chromaticity is very important, especially if the momentum spread of
the beam is large. Then, the tune-spread of off-momentum particles can be quite important.
This means that the particles can approach dangerous resonances which can enhance the
beam loss. On the other hand, the chromaticity control is an efficient way to correct collective
instabilities by triggering the Landau dumping mechanism (see following chapter).

A method to control the natural chromaticity, while keeping the tunes constant, is to
introduce two families of multi-poles (higher then quadrupole) in non-zero dispersion areas
along the ring. Let us remind that the off-momentum orbit on a 2n-pole magnet gives an
equivalent 2n — 1-pole effect in the equation of particle motion at first order. This means
that an off-momentum particle orbit on a sextupole will give an equivalent quadrupole effect.
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Figure 43: Lattice functions of a ring lattice using two (left) and four (right) families of
sextupoles.

Thus, two families of “chromaticity” sextupoles, for example, placed at locations of the ring
where the dispersion function is nonzero, will affect the chromaticity by an amount [41]:

s =5 P BaaoIa(oIn(5)ds (137)
where by(s) is the sextupole multipole strength measured in T/m? and 7, is the horizontal
dispersion of the ring (the vertical dispersion 7, is assumed here to be zero, which is true as
long as we do not introduce vertical dipole fields or vertical orbit distortions). Now, the total
horizontal and vertical chromaticity is the sum of the “natural” and the “sextupole gener-
ated” chromaticity &, r and can be controlled by varying the strength of the chromaticity
sextupoles. In order to achieve higher values of chromaticity correction with lower sextupole
field, two families of sextupoles should be placed at high-beta, high-dispersion regions of the
ring.

As we mentioned in the introduction, when non-linear elements are introduced the optics
functions are distorted and have to be recalculated by the full non-linear equation of motion.
Thus, the sextupoles may strongly affect the beta and dispersion functions as well as the
second order dependence of the tunes to the momentum spread (higher-order chromaticity).
Explicit expressions on the first and higher order terms of the chromaticity are given in [41].

This dependence of the optics functions on the momentum spread may introduce strong
“beta/dispersion waves”, which will perturb the dynamics of the ring. For example, in fig-
ure 43, we show the optical function of the SNS accumulator ring after introduction of the
two families of sextupoles to correct the natural chromaticity and set it to zero. There is an
obvious distortion of the beta and dispersion function, whereas in the case of the linear lattice
the distortion of the optical functions functions for particles with nonzero momentum spread
was quite small. Another aspect of the distortion can be observed in the dependence of the
chromaticities with the momentum spread (Fig. 44).

In order to minimize the dependence of the beta, the dispersion functions and the chro-
maticity on the dp/p, we can place two families of sextupoles in adequate locations such that
the second order effect is eliminated. However, this solution does not give enough flexibility

83 June 28, 2002



High-Intensity Circular Accelerators Single-Particle Dynamics

3.0 ‘ ‘ ‘ ‘ ‘ ‘ 1
—— &y 2 Sext—Families ON - : -
=}
X
y

2 Sext-Families ON L
4 Sext—Families ON J Sy — -
4 Sext-Families ON - o

20 -

1.0 -

0.0 -

&x» Gy

-10 |
-9+

-20
-11 b

30 ‘ ‘ ‘ ‘ ‘ ‘ 1
-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 -0.7 -0.5 -0.3 -0.
dp/p

1 8p/F())l O.‘3 015 0.7
Figure 44: Plot of the chromaticities &, ,r as a function of momentum spread, when four
families of sextupoles are used. The natural chromaticities are also plotted (distinct red and
green lines in the middle of the plot. This plot reflects the successful minimization of the first
and second order chromatic terms, accomplished by the four sextupoles families’ scheme.

in the lattice tuning. The preferred solution is to place additional families of sextupoles and
try to minimize with their help the second order chromatic effect. Returning to the exam-
ple of the SNS, two additional families of sextupoles were used in order to compensate the
off-momentum optical distortion. In Fig. 43, we show the optics functions for a four-family
chromaticity correction scheme. Now the optical distortion is eliminated. This can be also
seen in the dependence of the chromaticity with respect to the momentum spread.

3.11 Non-linear effects
3.11.1 Kinematic effect

Note that, even in the absence of any field, the motion of a relativistic particle in free space
is a non-linear function of the canonical momentum p. The “kinematic non-linearity” refers
to these high-order terms in the expansion of the classical relativistic Hamiltonian which
contain only the transverse momenta, p, and p,. This non-linearity is negligible in high-
energy colliders (e.g. RHIC, LHC), where p,, < p, but it cannot be neglected in low-energy
high-intensity.

In fact, a measure of the impact of this non-linearity is given by the first-order tune-shift.
By keeping all the kinematic terms in the expansion of the Hamiltonian, we obtain a general
expression for the first-order tune-shift they induce [27]:

o0

1SN (2 = 3)1 G~ 2 2k = A)\ a_t pon
6Qw:%§; TR xE%)\( )( )( oy )Jw JEAG,y, (138)

where G, = ¢, ing Yoy Ve ds depends on the usual Twiss gamma functions. The first, usually
dominant, term in the series gives an octupole-like tune-shift, 7.e. linear in the actions. For

84 June 28, 2002



High-Intensity Circular Accelerators Single-Particle Dynamics

a high-intensity rings, where the emittance is large and the gamma functions in the straight
sections exceed unity, the kinematic terms give a non-negligible tune-shift. For the SNS
accumulator ring it is about 107 at 480 7 mm mrad.

3.11.2 Magnet fringe field

In the multi-pole expansion (77), we neglected any contribution from a longitudinal depen-
dence of the field components. Nevertheless, in order to satisfy Maxwell’s equation, the gradual
drop of the field at the edges of the magnet has to be taken into account. On high-energy
colliders, the transverse field approximation is valid and the fringe-field effect can be entirely
neglected especially in the magnets populating the arcs (e.g.. see [63]). On the other hand,
on low-energy high-intensity machines where the beam emittance is large and the magnets
are short with wide apertures, this longitudinal dependence of the field becomes the most
important magnet non-linearity [27, 64].

General field expansion We developed [26] a general multipole expansion that is appli-
cable for magnetic fields that depend arbitrarily on the longitudinal coordinate z. Being a
power series in the transverse coordinates x and y, is valid only close to the centerline. The
expansion is intended to describe an arbitrary “multipole” magnet along with its fringe field.
This expansion generalizes an approach described by Steffen and reduces to formulas he gives
in the case of dipoles and quadrupoles [65].

In the current free regions to which the beams are restricted, the magnetostatic field
B(z,y, z) can be expressed as the gradient of a scalar potential ®(z,y, 2);

0P 0P 0P

B(z,y,2) = V®(z,y,2) = P + 8_yy + 2.2 (139)
where ® satisfies
Vi0(z,y,2) = 21(12) + 22;) + gzz(f =0 . (140)
An appropriate expansion for the intended calculation is [66, 67]
B(r,,2) = 303 Cnl2) (141)

m=0 n=0

where the coefficients C,, ,,(2) depend on the longitudinal position z. The spatial dependence

of function ® can guide the shaping of the pole pieces of iron magnets to match, as closely as

possible, equipotentials of ®. This is discussed by Steffen [65], for the case of quadrupoles.
Substituting Eq. (141) into Eq. (140), we get a recursion relation for the coefficients;

Cm+2,n - _Cm,n+2 - Cr[i},n ) (142)

where in this and subsequent formulas a superscript [I| denotes [ differentiations with respect
to z; in this case [ = 2. Now, we can evaluate the gradient of the potential and get the field
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components in the three Cartesian directions;

"y
Bo(w,y,2) = DD Copii(2) - (143)
m=0 n=0 B
B 00 o l'nym
By(x,y,z) - ZZCerl,n(z)W, (144)
m=0 n=0 T
5 B 00 o0 6[1] xnym "
) = Y elY (145)
m=0 n=0 B

The coefficients can be expressed in terms of the usual normal and skew multipole coefficients
which, as well as being conventional, have only one index, while C,, ,, has two;

bo(2) =€) = () (00,2

) o) = (2 ) 00.2)

(146)

We next seek a representation of the field as a function of these coefficients and their deriva-
tives. We turn to the recursion relation (142) and try to write it in a general form. In fact,
we may observe that

k
Conn = Z(_l)k <l>cr[r2bll2k,n+2k—2z : (147)

The last equation can be proved by recurrence. In order to have the dependence on the
multipole coefficients (see Eq. (146)), we have to distinguish two cases for m, namely m = 2k
(even) or m = 2k + 1 (odd), and we have

k
k
Cotn =) (-1 <l>afﬂzml forn+2k—20—13>0

=0
. . (148)

k
Cos1m = »_(—1)F <l>bfﬁzk—2z

=0

Note that the upper bound of the first series involving skew coefficients has to be modified
accordingly in the case of a “dipole” magnet (n = 0) in order to fulfill the restriction n + 2k —
2l —1 > 0. Moreover, the coefficients n and k cannot be simultaneously 0 due to the fact that
these relations stand only for non-solenoidal magnets, i.e. Cyo = 0.

We can now put the representation of the coefficients in the magnetic field. After having
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rearranged the m summation the field components can be written in a compact form as

o.¢] oo m n - 2m
m(M) T°Y [21] ) [21]

Buleand) =32 50 () (W gy 0 )

n=0 m=0 [=0

o > n,2m m

_ m vY My 121
By(z,y,2) —Z Z(—l) W [Z ( I )bn+2m2l
=0

n=0 m=0
m—+1 m + 1 2[ y
o Z n+2m+1 QZW

. % m n ,2m
m(TY) T°Y [20+1] Y [20+1]
B.(z,y, 2 Z (—1) <Z>W <bn+2m2l2m +1 + an+2m12l>

n=0 m=0 [=0

keeping in mind the restrictions given in Eq. (148). In an idealized model of a magnet, only
one (or in the case of combined function magnets, two) of the multipole coefficients will be
non-vanishing in the body of the magnet (length Leg) and in this region only the [ = 0 terms
in the expansions survive. One can make many useful remarks about symmetries of the skew
and normal multipole coefficient in a quite straightforward way through these expressions.

In order to investigate the impact of the fringe field to the particle motion, one should know
the exact shape of the multi-pole components along the edges of the magnet and integrate the
equations of motion. This can be done by accurately modeling the magnet with 3D Poisson
solver codes [68]. On the other hand, the fringe effect can be represented as a non-linear map
which transports the transverse coordinates through the fringe. For this, different approaches
exist, using either direct numerical evaluation with exact integration of the magnetic field [69,
70] or parameter fit of an adequate function [71, 72, 73] (e.g. the Enge function [74]). A
good approximation can be given by computing the integrals involved in the “hard-edge”
approximation, i.e. taking the limit for which the fringe-field length goes to zero (see [75, 76].
In what follows we will study the impact of the fringe-fields on dipoles and quadrupoles, taking
this approximation.

Dipole: Consider a “straight” dipole magnet. In that case, the configuration of poles and
coils is symmetric about the x = 0 and y = 0 planes, and the coils are excited with alternating
signs and equal strength. The magnetic field will satisfies the following symmetry conditions:
B, is odd in x and odd in y; B, is even in both x and y; B, is even in z and odd in y. Using
a general z-dependent field expansion we get:

Xm: m 2n+1y2m+1 m b[2”
(2n + D!I(2m + 1)1\ [ ) 2nt2me2=2l
m

0 1=0

m 2n 2m m 9
Z ( l >b[2n}+2m—2l (150)

0 1=0

= 1 2m+1 m b[21+1}
2m+ ) l 2n+2m—21

m,n=0 [=0

3 3
: ﬁMg ﬁMg
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Taking the field expansion up to leading order, we get:

B, —bg 2b0}y + b (2® — %) + O(4) (151)

B, yb +O()

where by represents a sextupole field component allowed by the symmetry of the “dipole”
magnet (for an ideally designed magnet b, = 0) and O(3) and O(4) contain all the allowed
terms of higher orders.

Note the b%z]y2 in the representation of the B, field. This means that the dipole fringe-
field is associated with a sextupole like effect which usually has a big contribution to vertical
chromaticity.

Quadrupole: The configuration of poles and coils in a quadrupole magnet is symmetric
about the four planes z = 0;y = 0; = y; * = —y and if the coils are excited with
alternating signs and equal strength, the magnetic field will satisfy the following symmetry
conditions: B, is even in x and odd in y; By is odd in « and even in y; B, is odd in both x
and y; and B,(z,y, z) = B,(y, z,2). As before, we may express the field components as:

B. =
@ Z 2; (2n),(2m+1)! l Dsnto2mi1-2i
(—1)mx2n+1y2m <m) b[Zl]

2n 4+ 1)1(2m)! \ [ ) 2wz (152)

o0 m _1)mx2n+1y2m+1 m 214+1]
B, = b
Z Z (27’L + 1)](2m + 1)] l 2n+2m—+1-21

The field expansion can be written as

B, = {bl—ll—2(3x + 0 }] +005)
B, = {bl—%@y + 22)b? }] +0(5) (153)

B, = ayb!! + O(4)

where b, (z) is the transverse field gradient at the quadrupole axis, and O(4), O(5) contain all
the higher order terms. Note also that b3 = —b[12}/2, due to the field symmetry.

For a quadrupole one can evaluate the fringe-field contribution in the limit of zero fringe
length. The corresponding Hamiltonian for a single fringe (to leading order) is [75, 76]

+Q

3 3 2 2
op (y Dy — TPy + 3x Ypy — 3y xpx)a (154)
12Bp(1+ p)

Hy =
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Figure 45: Tune footprints of the SNS ring, based on realistic (blue) and hard-edge (red)
quadrupole fringe fields.

where (); is the quadrupole strength, and the 4+ and — signs are used at, respectively, the en-
trance and exit of the magnet. It follows, as was shown by Lee-Whiting [87], that a quadrupole
fringe-field induces an octupole-like transverse kick.

To study the non-linear effect of the fringe-field, maps can be built quadrupole maps based
on either (154) or an exact representation [114]. Figure 45 represents the tune-shift given by
quadrupole fringe fields in the case of the the SNS ring. It seems that the hard-edge model
slightly overestimates the fringe-field effect and therefore represents a conservative estimate.
On the other hand, the fringe-field tune spreads are of about (0.04,0.03) at 1000mr mm mrad,
roughly one-third the space-charge tune spread.

The tune spread can be accurately represented by the results of first-order perturbation

theory:
vy _ (ann ny\ (2
<5Vy> B (ahv avv) (2Jy> ’ (153)

where the normalized anharmonicities are given by

1
- + iMxi iy
@hh 167er; Qiffric

1
Apy = 1675 zz: iQi(ﬁm‘ayi - ﬂyiami)7 (156)
1
— +QifByiayi.
¢ 167er2; Qibiicy
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Here the index 7 runs over the entrances and exits of all quadrupoles in the ring, and the + and
— signs are as in (154). Note that the entrance and exit fringe fields do not cancel one another:
even if the 3 functions are equal at the entrance and exit, the a functions usually change sign,
leading to an additive effect. For the SNS lattice we find (ann, Gho, Go) =~ (49,22, 42)[m™'],
and these values closely match (apart from the obvious resonance) the results shown in Fig. 45.

3.11.3 High order multipole errors

For a given magnet with a perfect 2(n + 1)-pole geometry, the scalar potential should satisfy
the following symmetry condition:

O(r,0,2) = O(r

7n+1_gaz) ) (157)

which is interpreted in a relation between the index n and the multipole order (n + 1):
n=2j+1)(n+1)—1. (158)

Thus, for a normal dipole (n = 0) the multipole coefficients allowed by the magnet symmetry
are of the form by;, for a normal quadrupole (n = 1) by;41, for a normal sextupole (n = 2)
bgj12, etc. In a high-intensity ring lattice with dipoles and quadrupoles the main contributions
are coming from the lower multipole field allowed components, i.e. the sextupole and decapole
in the dipoles and the dodecapole and twenty-pole in the quadrupoles.

3.12 Non-linear Correction
3.12.1 Sextupole correction

The main sextupole non-linearities in a ring are usually introduced by the chromaticity sex-
tupole, the sextupole errors in the main dipoles and the dipole fringe-fields.

By using classical perturbation theory, we can show that sextupoles introduce a second
order (quadratic in the sextupole strength) tune-shift with amplitude which is linear with
the particles’ emittance, equivalent to a first order octupole effect. This tune-shift may be
quantified by the anharmonicity coefficients. To give an example, we display in Fig. 46, these
three quantities in the case of the SNS ring for different ranges of chromaticity values (i.e.
different values of the sextupole strengths). The maximum anharmonicity values are found to
be a factor of five smaller than the ones introduced by the quadrupole fringe-fields, indicating
that the introduction of chromatic sextupoles will not have an important non-linear impact
on the SNS ring. This residual octupole-like tune-shift can be corrected by dedicated octupole
correctors.

On the other hand, the sextupoles may excite sextupole type of resonances defined by the
condition 3Q); = N or (), £2@Q, = N where N is an integer number. The main functionality of
the sextupole correctors is the correction of erect sextupole resonances, which can be excited
by sextupole errors in the dipoles, dipole fringe-fields at leading order and the non-linear
effect of the chromaticity sextupoles. As all non-linear correctors, they should be located in
non-dispersive areas in order to avoid “feed-downs” due to closed-orbit displacements giving
a quadrupole effect at first order. This avoids the perturbation of the chromaticity.
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Figure 46: Anharmonicities versus the chromaticity. The maximum values are within 5% of
the ones produced by the quadrupole fringe-fields.

One can try to compensate the resonance effect by tuning the sextupole correctors to
cancel the sextupole resonance driving terms g3, g12 and g 2, depending on which one is
the most important. A global resonance correction can also be followed, by trying to minimize
the norm of all sextupole resonances. An example is given in figure 47, where we present the

norm \/gg,o + 919 + g7 _5 of the resonance driving terms for the SNS accumulator ring, before

and after correction. In the case of the SNS ring the sextupole correctors are eight in total (two
per super-period) and are powered independently in order to produce any possible harmonic.
To give an order of magnitude, the integrated sextupole gradient produced by the correctors
in SNS ring is about 2.6 T/m.

3.12.2 Skew-sextupole correction

The excitation of skew sextupole resonances was found to be one of the most important
limitations in high intensity machines like the AGS booster. Skew sextupole resonances of the
type 2Q), £ Q, = N and 3Q, = N can be excited by skew sextupole errors coming from rolls
in the main dipoles or other geometrical errors in the magnet elements of the SNS ring. In
order to correct this effect skew sextupole correctors are needed. In the case of the SNS ring,
windings able to produce a skew-sextupole component are mounted on the dipole correctors
along with the main dipole coils and the skew quadrupole components. The integrated gradient
is 6.6 x 1072 T/m. The correction schemes followed in the case of skew sextupole correctors
are very much equivalent to the ones followed in the case of normal sextupoles.
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Figure 47: Norm of sextupole resonance driving terms before correction (dashed line) and
after correction (solid line) with dedicated sextupole correctors. The resonance norms are
reduced after the correction by as much as a factor of four.

3.12.3 Octupole correction

Octupole magnets can modify the tune-spread caused by quadrupole fringe-fields, kinematic
non-linearity, chromatic sextupoles, and other octupole-like effects. If octupoles are placed in
non-dispersive areas, the anharmonicities (156) become

3
App = 0,3,
hh = Qhp + 167Bp Z B

6
Apy = apy — IGTB/) ZOjﬁxjﬁyj, (159)

J

3
A’U’U: vV P O; 2'-
a@ +167erZ Iy

Here O; denotes integrated octupole strength, and the index j runs over all octupoles in the
ring. Complete cancellation of the tune-spread requires three families of octupoles to drive
the anharmonicities (159) to zero. In some cases, when one anharmonicity is much smaller
than the others, two families of octupoles can reduce the tune-spread. This is not the case for
the SNS ring, however. The octupole strengths required to drive the anharmonicities (159)
to zero depend on the octupole locations. Figure 48 shows the integrated strengths of the
octupole correctors in the SNS ring versus the position of a third family in one of the SNS
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Figure 48: Top: the [ functions in the first half of the SNS straight section. Bottom: inte-
grated strengths of three families of octupoles versus location of the third family.

ring straight sections. The first two families, at the ends of each arc, are located where (3,
and 3, take extremal values. Then the optimal position for the third corrector is where the 3
functions are roughly equal, i.e. either in the middle of the straight section or just after the
doublet. Unfortunately, the addition of this third family is not possible to a first stage due to
the tight space of the ring.

On the other hand, it would be impossible to correct all octupole type resonances of the
form 4Q), = N, 2Q, £ 2@, = N and 4@}, = N with a two-family scheme. For this reason,
it is usually preferred to power the correctors individually powering, in much the same way
as for the other non-linear correctors. To give an order of magnitude the integrated octupole
gradient given by the correctors of the SNS ring is 2.9 T/m?.

3.12.4 Error compensation in magnet design - An example

In a magnet with normal quadrupole symmetry the first allowed multipole error is the normal
dodecapole, bs. In the absence of pole-tip shaping, this error can be exceedingly large: for the
SNS 21 ¢m quadrupole (see Fig. 49), an OPERA-3d [68] simulation (with un-shaped ends)
gives a dodecapole component of about 120 (in units of 10™*, normalized with respect to the
main, quadrupole, component).

Because the dodecapole error is quite localized, its effect can be computed using a thin-
element approximation. Applying first-order perturbation theory, one finds the tune-spread
induced by dodecapole errors is given by

J2

OV bs5i Qi v
<6vy> 2 5oy | 0 (160a)

y

where D; denotes the 3 x 2 matrix

gi _Gﬂgiﬁyi 3ﬂzi52i>
(4%@ 60,02, -85 ) (160b)

93 June 28, 2002



High-Intensity Circular Accelerators Single-Particle Dynamics

0.125}F
Be /T
0.100F
0.075 |
0.050

0.025 ¢

0.000

Zim

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 49: Dodecapole component in a 21 cm quadrupole with un-shaped ends. The reference
radius is 10 cm, and the origin, z = 0, is at the magnet’s center.

Here the index ¢ runs over all dodecapole kicks in the ring, 7.e. over the entrances and exits of
all quadrupoles. Note that this effect depends linearly on the error strength, but quadratically
on the amplitude. In Fig. 50 a comparison of this analytic result with tracking data and shows
a striking agreement. Figure 50 also shows that the very large uncorrected dodecapole error
gives a tune-spread (at 1000m mm mrad) roughly twice that caused by the quadrupole fringe
fields.

By shaping the ends of the quadrupoles, one can reduce the b5 error to 1 unit or less [65].
Such shaping reduces the peak and the trough seen in Fig. 49, and makes those two areas
roughly cancel one another. This constitutes local compensation. One might also correct the
bs error by adding a small negative dodecapole component through the body of the magnet.
In Fig. 51 we compare the tune-spreads (160) after local and body compensation. In this
example, the compensation works well in both cases, with local compensation being slightly
better. But, in fact, it is essential to use local compensation: because the tune-spreads (160)
depend cubically on the § functions, the results of body compensation will be very sensitive
to the ring optics.

3.12.5 Dynamic aperture

An ultimate check of the validity of the correction schemes and the good performance of the
beam is given by single-particle tracking. There are several tracking programs that are able
to propagate the single particle along the ring lattice, including all the linear and non-linear
imperfections mentioned above.

A tracking example is given in Figures. 52, where we study the detrimental effect of the
natural chromaticity in the dynamic aperture of the SNS ring. In these figures, we plot
the maximum survival amplitude (in terms of total emittance) of particles launched in 5

94 June 28, 2002



High-Intensity Circular Accelerators Single-Particle Dynamics

Qy e
..
0.84 .0::
P .8
.O'J“c
U
o9
Y7
0.80 ..o
LU [ )
Yoo oee®®
¢ ‘\:.:::0".0
0.78 ® 000 °o®
e * %% 00 e?®
°*o’e 0 °®
L4 oo )
eq © °
0.76 ° o % .‘
° ° .o .o.
°
0.74+} ° ° ° (3)(7

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

Figure 50: Tune footprints of a ring lattice with a dodecapole error in the quadrupoles of
bs = 60 units; results are from tracking data (blue) or the analytic estimate (160) (red).

different initial ratios of the transverse emittances, with three different momentum spreads
(0p/p = 0,40.2). The momentum spread of £0.2 is indeed higher than the actual RF bucket
size of +0.7. Nevertheless, it corresponds to the momentum acceptance of the ring and halo
particles can reach this level before they are “cleaned” by the Beam-In-Gap kicker. Through
Figures 52, one observes the unacceptable reduction in the dynamic aperture of the SNS ring
below the physical aperture of 180 7 mm mrad for a momentum spreads of -0.2 (green curve
on the left). This is attributed to the fact that the chromaticity pushes the particles’ vertical
tune towards the very dangerous integer resonance, at ), = 6 and the particles get rapidly
lost. A less pronounced reduction of the dynamic aperture can be attributed to the half-
integer resonance at 2@Q), = 11 for particles with momentum spread of 0.2 (red curve on the
left). Finally, the on momentum particles have very similar dynamic aperture (blue curves).
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Figure 51: Comparison of tune-shift plots using body (red) and local (blue) compensation of
the dodecapole component in the SNS ring quadrupoles.
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Figure 52: Dynamic aperture for the working point (6.3,5.8), without (left) and with (right)
sextupoles.
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4 Multi-Particle Dynamics

4.1 Introduction

When the beam currents are high enough the self fields of the beam can no longer be neglected
in comparison to the applied fields. The mutual interaction of the charged particles in a beam
can be represented by the sum of a “collisional” force and a “smooth” force. The collisional
part of the total interaction force arises when a particle “sees” its immediate neighbors and is
therefore affected by their individual positions. Such a force is responsible for small random
displacements of the particle’s trajectory and statistical fluctuations in the particle distribution
as a whole. In most practical beams this is a relatively small effect. Thus, the mutual
interaction between particles can be described mainly by a smoothed force. As a result, one
can consider the motion of a single particle under the influence of the surrounding “space
charge”.

A simple theory can be built using the smooth or weak approximation for the single-
particle unperturbed betatron motion. The influence of the other particles in the beam on
the test particle is then added as a transverse Lorentz force.

A self-consistent approach, typically required for the treatment of coherent instabilities,
can be built using the Vlasov equation which we introduce at a later stage.

4.2 Space-charge effects
4.2.1 Transverse space-charge force

A good description of space-charge effects can be found in [95],[96]. We will use material from
these books in our analysis.

We start with the equation of motion in the smooth approximation, for example, in the
vertical direction:

2
" VyO

O 161

Y RZy myv? (161)

where R is the radius of the ring, and v, is an unperturbed tune defined as betatron frequency
wyo divided by the particle revolution frequency wy. Here y' = dy/ds.

By considering various contributions to F' we can explore several collective effects. For
example, contribution of the self fields to F' will describe direct incoherent tune shift; the
contribution from image fields will modify the incoherent tune shift and also introduce the
coherent tune shift; while the contribution from wake fields will address the question of
coherent transverse instabilities.

The function F' can be expanded to first order in terms of the test particles motion y and
its average position ¥:

F= [%—Z]yzoy + [Z—J;]yzoy. (162)

When ¢(t) = 0, the beam and its associated fields are static. This term can be considered as
an additional focusing term, and thus it will cause an incoherent tune shift.
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The coherent motion can be solved by choosing y = y, i.e. the test particle is at the beam
center with zero betatron amplitude.

When dy/dt # 0, the beam and its fields are time varying, and 0F/0y will in general be
complex. This will take into account the wake fields left by other particles at various azimuthal
positions in the accelerator and will lead to the concept of a complex coupling impedance and
associated coherent instabilities.

4.2.2 Direct incoherent tune shift

We now consider the contribution to the space-charge force from the self field of the beam.
Assume an unbunched beam that has a longitudinal line charge density Ae and moves with
speed fc (A = N/27R, where N is the total number of particles in the beam and R is the
radius of the ring). For a round beam of radius a with uniform distribution, using Gauss’s
law we obtain:

E, = —h r<a (163)

To find the magnetic field we use Ampere’s law which gives

_2Xefd

By = r<a (164)

Problem 4.1 Derive E, and By for both r > a and r < a.
The Lorentz force experienced by the particles in the radial direction is

2)\e?

a 72

One sees that the electric and magnetic forces will cancel one another in the ultrarelativistic
limit v >> 1. In other words, the direct space-charge effect is essentially nonrelativistic, and
thus becomes very important at low energies.

We now introduce the concept of a tune shift by assuming a perturbation which affects
the focusing in the vertical direction:

F,=e(E, — 8By) = =—r. (165)

2

Yy
y" + #y = Ky. (166)

The perturbed (“depressed” since K is subtracted) tune is given by

v = vy — KR?, (167)
KR?

for small K. We thus can define the tune shift as

K 2
Ay = BE (169)

2l/y0 ’
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Using the space-charge perturbation given in Eq. 165, we obtain the direct incoherent space-
charge tune shift:
F,R? Ae? R? NriR Nr?

Ay = = = = 170
g 2uemy 322 mc2a?y3 Ry 2ma?fduy 2w 32ry3€’ (170)

where r2 = e€?/mc? is the classical radius of the particle (in cgs units), and € is the beam
emittance.
Similarly, for a Gaussian distribution we get

2)\62 —r2/242
FT‘ = 0/2—727“ (]_ — exp / ), (].7].)

and for r values small compared with ¢ we have

2 2
o2, (172)

a?y220? "’
which gives the maximum tune shift for a Gaussian beam:

NriR

- dro? 323y

Avg (173)

To compare tune shifts for various distributions we will need to introduce the concept of
equivalent beams and rms beam parameters. We will do this in Section 4.4. Here we jump
ahead by stating that for the uniform distribution @ = 20, where o is rms beam radius. We
therefore rewrite the expression for the tune shift due to a uniform distribution as

NriR

- 8o 323y

Avy (174)

We can see that the tune shift of a uniform beam is a factor of two smaller than the maximum
tune shift of a Gaussian beam.
We note that the tune shift expression can also be obtained using beam optics which gives

1
 4r

Av /k(s)ﬁ(s)ds, (175)

where k(s) is small gradient perturbation. Using k(s) = mivddFrT and F) for a uniform distribu-

tion, we obtain an expression for the tune shift of a uniform beam identical to Eq. 170.

We note that the above formulas were based on the assumption of a circular beam cross
section. For an elliptical beam our expression for the vertical tune shift of a uniform beam is
rewritten as

Nr? 1
Avy = roRR

B 132 3vy av(ag + Clv)’

(176)
where ay and ay are the horizontal and vertical semi-axis of the ellipse, respectively.
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4.2.3 Effect of images on incoherent tune shift

Cancelation between electric and magnetic fields is perturbed due to the beam surroundings,
which contribute to a tune shift. The electric field distribution will be influenced by the
conducting boundary while the magnetic field distribution will be influenced by the presence
of magnet materials within a magnet.

We begin with a simple example of “rectangular” chamber approximated by two parallel
plates. Let such plates be made of a perfect conductor and located at y = +h. Assuming
h >> a, the image charge contribution can be calculated as coming from series of image like
charges of density —\e at y = £2h, £6h, etc. and density \e at y = +4h, £8h, etc. A particle
at location y on the y—axis will thus experience an electric field:

1 1 1 1
E, =2\ - . — — ... 177
v e<2h—y 4h—yjL 2h+y+4h+y ) (177)

For |y| << h, it becomes

e = (=1 72 Xe
E, ~ —ﬁyz =5l (178)

We now consider magnetic part of the problem. Let magnet pole be presented by two plates
at y = +¢. The image currents are A\efc at y = +2¢g, +4g, etc. This gives

1 1 1 1
B, = 2)\eﬂ< + + ... = — — ..), 179
29—y 49—y 29+y  4g+y (179)
Aef 1 w2 Xef3
n=1

The total incoherent tune shift of a uniform beam in the vertical direction becomes:

Aro R? 1 2 2 3?
Ay, = — . 181
Yy Vyo 3%y <a272 + 24h2 + 1242 (181)

Problem 4.2 Repeat analysis for image effects for the x-motion and obtain expression for
the tune shift in horizontal direction Av,.

For a bunched beam the maximum tune shift due to direct self-fields is obtained with A
replaced by a peak density at the beam center A Similarly, the maximum electric field is
obtained by replacing A with ) in the case of conducting boundary. For the case of magnetic
field one has to distinguish between “d¢” (A) and “ac” ()\) component of the current. The
“dc” contains frequencies at which the skin depth is greater than the vacuum chamber wall
thickness. The “ac” component has a skin depth which is small compared to the wall thickness.

The vertical tune shift should be rewritten as

roR? [1 /1 7% N¢ o0 7 N
Avy = — —(= A —— Al 182
V‘” Vyo 32y {72 <a2 * 24h,2> +p (24!7,2 - 1292> (182)
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We can rewrite the expression above in a more general form using the Laslett coefficients:

i NTO B Esc ) 61 1, 262 ] 2 1 €1,
Aine = Lrﬁ?v} (Bf - ZCZ@[ By T g, ] >
(183)

where we use By for bunching factor defined as a ratio of average beam current to a peak
current, include the neutralization parameter n., and keep the structure parameter C; which
represents the fraction of the circumference occupied by each type of component. Here 3 ~
R/vy is an average beta function, and €, is the self-field coefficient which is equal to 1/2 in
our case of circular beam cross section and uniform density. In this expression, the first term
under the > sign comes from the electric image, the second term comes from “dc¢” magnetic
image, and the third term comes from “ac” magnetic image due to axial bunching. The Laslett
(image) coefficients € » will depend on the geometry of beam pipe. These coefficients were
computed for various geometries [96],[97],[98],[99], and are given in Table 9. In Table 9, K (k)

Table 9: Image coefficients for various beam pipe geometries

Image Coefficients Parallel Plates Circular Elliptical

€1 _z 0 —L&[2e-m)KY -1
€1y = 0 e-R)K -1
€2x —g—z - -

€2,y g_z B B

€1 0 1 2 [1 CAK2(1 - k) /7?2]
&1y 71r_f25 3 v [ AK? [ ]

2, 0 - -

boy = - -

is the complete elliptic integral of the 1st kind, v and A are the major and minor axes of the
elliptical tube, and d = v/v?2 — h?. Symbol € is used for the coefficients associated with the
incoherent part, while for the coherent part we use additional coefficients £ with the subscripts
1, 2 referring to the electric or magnetic problems, respectively. The image coefficients €5 and
&, for closed magnetic boundaries (such as circular or elliptic) cannot be calculated for y — oo
because the induced magnetic field would not permit a charged beam to pass through. Closed
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magnet yokes are used in superconducting magnets, but there the coefficients e; = & — 0
since the magnet material is driven completely into saturation ;4 — 1. For more discussion on
image coefficients see [96],[99].

4.2.4 Coherent tune shift

We now go back to Section 4.2.1, and expression for the force in Eq. 162. In this case the
average position 3 is varying in time due to the coherent oscillation of the beam. The equation
of motion can be solved by choosing y = y. We thus have

I <%§3 a m;ﬂ qg—ﬂw " [aa_;]y[]))g - sy

We can now introduce the coherent tune shift:

Apor = B [8_F]
coh = 2uomyv? \ Loy 1y

L+ [g—;]yo). (185)

Such coherent motion is called the rigid dipole mode. Higher order modes also exist. These
modes govern beam cross-sectional form and will also contribute to beam tune shift even in
the absence of beam surroundings, while the coherent tune shift of dipole mode is a result of
image fields. For this reason, we will refer to the tune shift of high order modes as “effective”
to distinguish from the coherent tune shift caused by the dipole mode.

Similarly to the incoherent motion, we can find contribution to the force F from image field
and obtain the general expression for the coherent tune shift. Boundary conditions now depend
upon whether the oscillating field of the beam is of a low enough frequency to penetrate the
vacuum chamber and to reach the magnetic poles or not. Electric fields are always considered
as non-penetrating. However, for magnetic field both penetrating and non-penetrating fields
are possible. For the non-penetrating fields, the magnetic image should be decomposed into
its “dc¢” part, which is bounded on the poles, and “ac” part, which is bounded on the vacuum
chamber. In the case of the penetrating magnetic fields, we have:

Avgy, = {75\;207]205[ B, )5 [3252’ 62(i— )%} (186)

Once again, the first term under the ) sign comes from the electric image, the second term
comes from “dc” magnetic image, and the third term comes from “ac” magnetic image due
to axial bunching. In the case of the non-penetrating magnetic fields, we have:

N l l l Z Z
s [2] Sal2 ety o)

(187)

where additional term comes from “ac” magnetic image due to the transverse motion. The
correspondent Laslett coefficients are given in Table 9.
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4.2.5 Effect on image coefficients due to finite beam size

In our analysis we used the image coefficients derived in the assumption that distances between
a beam and its images are much greater than the transverse beam size. This assumption allows
us to approximate the beam and its images by line charges and currents which is not quite
accurate for some beams in high-intensity rings, for example, for the SNS beam parameters.

Below we underline the principle difference due to Zotter [97]. For a pencil beam at xq in
a circular vacuum chamber of radius h, the electric image coefficient evaluated at point x is
given by

%
2(1 = ¢og)?’
where ¢y = x¢/h and ¢ = x/h. For a beam at the center of vacuum chamber (¢y = 0), and

thus we have ¢; = 0 as we used in our estimates. For a uniform flat beam of width 2a we have
[97]:

€1 —

(188)

189
2¢? —v2 v u+tw (189)

where u = 1 — ¢y, v = a¢d with a = a/h. For ¢ — 0 this expression becomes indeterminate.
Thus this limit should be obtained directly from integration over a beam of finite width. Final
result is the following:

1 1 1 u—vw
1010, 0) = 55 |14 .

2

q1(0,90,0) = —3 (63 + %), (190)

Now, at ¢y = 0, €; # 0, and, for example, for a® = 1/2 (SNS example) we have ¢; = —1/12.

We can see that for the final-size (at the end of multi-turn injection) SNS beam at full-
intensity our estimates based on pencil beams are not quite accurate. However, we should note
that, due to the multi-turn injection painting, beam size increases gradually. The significant
value of « is reached only at the end of painting just before extraction.

4.2.6 Summary of major points

e Space-charge effect is of non-relativistic nature with direct incoherent tune shift having
energy dependence of 1/3%y3.

e For a beam with non-uniform density the space-charge tune shift depends on the am-
plitude. Particles with small amplitudes will have maximum tune shift. Such maximum tune
shift can be estimated using the concept of equivalent beams.

e For bunched beams space-charge force depends on the longitudinal distance from the
bunch center. This leads to a tune spread and tune modulation for particles executing a
synchrotron oscillations.

e Cancellation between electric and magnetic forces in the beam is perturbed due to the
beam surroundings which can lead to important tune shift due to image fields.
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e The estimates of the image coefficients are typically derived in the assumption that beam
size is much smaller than the distance between the beam and its images. For very large beam
sizes one has to take into account correction due to the beam size.

e Beams can get partially neutralized. In this case the electric space-charge field is reduced
and cancellation between forces is perturbed.

4.3 Self-consistent treatment of beams
4.3.1 The Vlasov Equation

Here we closely follow the description of this subject given in [100]. The accepted method of
describing self-consistent equilibria is the Vlasov model. It applies to all systems for which
Liouville’s theorem is applicable and where collisions between particles can be neglected.
A system of identical charged particles is defined by the distribution function f(g;,p;,t) in
six-dimensional phase space, where ¢; and p; represent the conjugate canonical space and
momentum coordinates. Liouville’s theorem states that

df  Of <~ [O0f . Of.
a-_9r 25 —o. 191
it ot +;<8qz-q b)) =Y (191)

This is equivalent to the statement that the volume occupied by a given number of particles
in phase space remains constant:

/d3qd3p = const. (192)
The phase-space coordinates ¢;, p; obey Hamilton’s equation of motion:
oOH oH
Qi - ) pz = - ) 193
opi 0y (193)

where H(q;, pi,t) = c(m?c® + (p — QA)?)Y? + Q¢ is the relativistic Hamiltonian. Here the
scalar potential ¢ and the vector potential A represent the sum of the applied fields and the
self fields of the beam. The self-field contribution is determined by the space-charge density p
and current density J. These quantities are obtained by integrating the distribution function
in momentum spaces

p=0Q / fqi, pi, t)dp, (194)

1=Q [ viap (195)
Then, in the case of explicit time dependence (0f /0t # 0), one has to solve the wave equations

for ¢ and A:

0 p
2 — _— = —
V7 — ho€o 52 o (196)
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62A J
ZA — - 197
vV Ho€o—F75 912 60 (197)

Using Hamilton’s equation, we rewrite the Liouville equation as

af 0H of OH
— 1
Z <3qz dp;  Op; 8qz-) 0: (198)

which is the Vlasov equation. This equation can be rewritten as

+Z< Z+QE+VXB)§£>:0, (199)

where P is a mechanical momentum, with electric and magnetic field determined self consis-
tently by Maxwell’s equations.

To construct a stationary (0/0t = 0) solution it is necessary to know the constants of
motion C};, taking into account both external focusing and self fields. Then, any distribution
function which is an arbitrary function of these constants f(Cy,Cs,..) satisfies the Vlasov
equation

df of aC;
dt Zac ot

(200)

since dC;/dt =0, for i = 1,2, ....

For constant focusing, one can choose the Hamiltonian to describe a stationary solution
with an arbitrary f(H). The potential in H must be found self-consistently from the charge
density.

For periodic focusing, the Hamiltonian is not a constant. The only stationary solution
known in this case is the Kapchinsky-Vladimirsky (KV) distribution.

4.3.2 KYV distribution

In statistical mechanics, the distribution in which the forces are linear and the phase-space
areas remain constant is known as the microcanonical distribution. This distribution, which
was used by Kapchinsky and Vladimirsky to study the effects of space charge on transverse
dynamics, is referred to in the accelerator community as the KV distribution.

We start with the equations of motion for a quadrupole focusing channel:

" + ky(z)x =0, (201)

v+ ky(2)y =0, (202)
where the focusing functions also include the linear space-charge force:

2K

kl(z) = kw,O(z) - ma

(203)
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where X and Y are the semiaxes of elliptical cross section of the beam, and « is the space-
charge parameter. Solutions of these equations are

x(z) = AW, (2) cos(¥(2) + ¢s), (204)

y(z) = A, Wy (2) cos(y(2) + ¢y), (205)
with o), = 1/W2, 4, = 1/W, and the following equation for W, ,:
1

, _ 2° ' 1,02
A2 = T (Wya' + W), (207)
with A2 ., = € being the beam emittance. The quantities A%, A> are the constants of the

motion. One can define a new integral of the motion

2 A2
Toy Y (208)

GCE
F:A§+—AZ, or G=
€y € €

As discussed above, any distribution function f(F) or f(G) satisfies the stationary Vlasov
equation. However, only the special microcanonical distribution produces linear equations of
motion. This distribution has the following form:

f:foé(F_FO)a f:foé(G_1)7 (209)

where §(x) is Dirac’s delta function. For such a distribution, all particles in the beam lie on
the surface of the 4-dimensional (4-D) hyperellipsoid
1[z?

1 2
L v —wiap] LIS con - wpr] <1 e
x x y Yy

2

The projection of this hyperellipsoid in the (z,2') plane gives 5 + (W,a' — W/x)?, which

may be rewritten in terms of the Courant-Snyder parameters as
Vo + 20,77 + Bot’” = €. (211)

In fact, all 2-D projections (z,z'; z,y; etc.) are ellipses with uniform particle density. The
charge density can be found from the distribution function as

p=0Qf, / 5(G — V)da'dy' = Q for, |2 (212)
By
The total current in the longitudinal z-direction is given by
I=v, / pdxdy = vpXYT, (213)
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where beam cross section is an ellipse XY 7. We then have

I I

p(z) = XY () fo= o (214)

By knowing the charge density, the electrostatic potential & can be found from Poisson’s
equation for any given position z, approximating the beam as an infinite elliptical cylinder
with semiaxes X, Y

d—=_" x2+y2_X(Z)_Y(Z)

= XG Fv() " )| et 215)

which gives a linear field inside the beam.

4.3.3 Stationary distributions in a constant focusing channel

For a uniform focusing channel the KV distribution can be represented as a delta function of
the transverse Hamiltonian:

f(Hy) = fi6(H, — Hy). (216)
We then have

n(r) = 2rf, / S(H, — Hy)dH, = 27 f, = no. (217)

Using the Poisson equation

ld/ do R@no Po
Sy (S ) e 21
rdr (7“ dr> €0 € (218)
we get
Po , 2 2 1 r?
= —(a" — = 1—-— 219
o(r) 4eq (= 17%) 4drequ ( a2>’ (219)
and
d¢ Po
E,=—F=—r, 22
dr 260r (220)

with linear beam self fields.

The KV distribution is the easiest one to perform analytic studies. However, it is not a
realistic one. In fact, a sufficient condition for the distribution function to be stable is to have
a monotonically decreasing f(H) [101]. The KV distribution, on the contrary, often becomes
unstable due to density fluctuations because of the §(H — Hy) dependence.

Clearly, a more realistic distribution is the one where the ellipsoid is filled inside also. Such
a distribution is called a “Waterbag” (WB) distribution:

[ = f20(Hy — Hy). (221)
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The density is proportional to the potential W (r):
n(r) = 2rfy [W(a) - W(r)]. (222)

This results in a linear Poisson equation in the form

1o ou\
;E (TE> = KU, (223)

in terms of a new variable u for the potential. The solution of this equation is the modified
Bessel-function Iy(xr). We thus obtain:

Io(kr) > | 224

n(r) = ng (1 = Iy(na)

which gives the zero-current parabolic density profile for k = 0, and a square profile for
Ka — 00.
One can construct a family of stationary distributions in the general form

f(r,p) = fo(Ho — H)", (225)

n=-1, (like KV), 4-—D, (226)

n=0 (WB), 4-D, (227)

n — 0o, Hy — 0o, (Mazwell — Boltzman), 4 — D. (228)

In six dimensions (6-D), it is not possible to get a distribution with linear forces inside the
beam but it is possible to get an analytically tractable distribution [102]:

n=-1/2, (analytically tractable), 6 — D, (229)
n— 00, (Mazwell — Boltzman), 6 — D. (230)
In 6-D, we have
p(r) = Q/dpf(r,p), (231)
kix? p?

H[] — H = |:H0 — XZ: T — e(I)sc(r) — % (232)

If we now define the expression in the square brackets as G(r), we obtain

QGn+3/2(r)

= 233
p(r) f ern+3/2 (r) ) ( )
so that a choice of n = —1/2 gives us a linear equation for the potential (similar to the WB

case in 4-D) which is solvable analytically. Such a distribution function was proposed and used
for studies of the 6-D beam halo in high-intensity linacs [102]. Subsequently, it was employed
to study the effect of particle collisions on beam halo formation [103].
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4.4 Envelope description of non-KV beams

Envelope equations for a continuous beam with uniform charge density and elliptical cross-
section were first derived by Kapchinsky and Vladimirsky (KV). It was later shown [104] that
KV equations are not restricted to uniformly charged beams, but are equally valid for any
charge distribution with elliptical symmetry, provided the boundary and emittance are defined
by rms (root-mean-square) values. This follows because

e the second moments of particle distribution depend only on the linear part of the force.

e this linear part of the force in turn depends only on the second order moments of the
distribution.

This is also true in practice for three-dimensional bunched beams with ellipsoidal symme-
try, and allows the formulation of envelope equations that include the effect of space charge
on bunch length and energy spread [104].

Consider a stationary or non-stationary distribution f(z,y,2’,’) in 4-D. The second mo-
ment of the particle distribution z is defined by

12 = / 2 f(z,y, ',y ) ded dydy’, (234)

and the rms width in the z-direction

Tpms = T = V 22. (235)

Similarly, one can define the other second order moments such as z'2, xz', 42, etc.

Problem 4.3 Show that for a uniform distribution in 2-D z,,,5s = a/2 and in 3-D (spherical
beam) ;s = a/v/5, where @ is the maximum beam radius.

We now derive the rms version of the envelope equation by starting with equation of the
motion

P+ kT = f,. (236)

We then construct the following expressions:

<2?>'=2<ar >=2<ap>, (237)
<ap>=<a'p+pr>=<p’> -k <>+ <zf, >, (238)
<p?>'=2<pp >= -2k <ap>+2<pf,>. (239)

From Eqgs. 237 and 238 we have
<2?>"=2<p’> 2 <> 42 < afy > . (240)
By defining the rms emittance ¢2 =< z? >< p? > — < xp >2, we obtain

e é? <ap>* & +(<x2 >)?
b= s T s TS A<z

(241)
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We now define 62 =< z? > and put Eq. 241 in Eq. 240:

2~2 2 2\\2
<o2>"= U—Z+(€%j2))—2k2aﬁ+2<xfx >, (242)
T

which can be rewritten in the final form, known as the rms envelope equation:

e < >
o 4 kg, — & = ST > (243)

o3 o

We should note that rms envelope equation was derived on the assumption that the rms
emittance is either constant or its time dependence is known a priori. It has been shown by
Sacherer that the term < xf, > is approximately independent of the distribution and has the
same value as for the KV equivalent distribution.

O

< xfy > r
x = —
“ 20m+0y’

(244)

which gives

é2 K

"tk — ————— =0 245

with a similar envelope equation in the y-direction. By introducing the beam width X = 20,
Y = 20, and €, = 4¢€,, €, = 4€,, we recover the KV envelope equations:

2K €2

X"+ kX — - =9 246

+ X+Y X3 ’ (246)

T T LN (247)
X+Y VY3 '

One can analyze the behavior of various distributions using the concept of equivalent beams.
According to this concept, two beams composed of the same particle species (with the same
current and kinetic energy) are equivalent in an approximate sense if the second moments of
the distribution are the same. This implies that the rms beam widths and rms emittances in
the two orthogonal directions are identical. As a result, one can describe the average or rms
behavior of non-KV beam by solving the rms envelope equation. Note that the rms envelope
equations are not closed for non-KV distributions since the rms emittance is not a conserved
quantity in the presence of non-linear forces. As a result, the rms envelope equations can be
applied for realistic beams with non-linear forces with the exception of situations where the
rms emittance growth occurs.

4.5 Resonance condition and space charge

In a circular machine the effect of magnet field errors in beam optics can accumulate. This
results in an instability if betatron tunes have resonant values. For example, in the absence of
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coupling, the resonance condition for the tune would be vy = n/m, where n is the harmonic
content of the errors and m is the resonance order. The resonance order m can be associated
with the multipole spectrum of the lattice errors, with m = 2 corresponding to gradient errors,
m = 3 - sextupole errors, etc.

If we now think about space charge as a perturbation producing a tune shift of individual
particles (incoherent tune shift) the resonance condition would become n/m = vy — Avy., with
Avg. being the maximum space-charge tune shift. Such a criterion is widely used when one
wants to choose the best working point in the tune space by avoiding dangerous resonances.
However, this condition is only approximate. It can be still applied for high-order resonances
or in the limit of very small space charge (high energy) keeping in mind that it is based on
incorrect physics. For high-intensity accelerators this condition would give too conservative an
estimate for low-order resonances which are most important in consideration of the resonance
condition. This, in turn, could strongly underestimate the maximum achievable current. A
correct treatment requires one to take into account the collective behavior of the beam.

The fact that the incoherent tune (do not confuse it with single-particle tune without space
charge 1) is irrelevant for integer resonances was first emphasized by D. Morin [105] and P.
Lapostolle [106]. It was then L. Smith [107] who used the envelope equation to prove that the
half-integer resonance does not occur at the incoherent frequencies either. Smith’s analysis
was extended to high-order resonances by F. Sacherer [108] using the Vlasov equation in 1-D.
The theoretical framework was later extended to 2-D by R.L. Gluckstern [109]. This theory
was subsequently confirmed with computer simulations by I. Hofmann [110] and S. Machida
[111]. Recently, a very good overview was presented by R. Baartman [112].

In general, the integer resonance can be investigated using the equation of motion of the
first moments. The half-integer resonance studies require the equation of motion of second
order moments or envelope equations. High-order resonances would require solution of the
correspondent equations of high-order moments. Also, high-order resonances can be treated
using the Vlasov equation as was shown by F. Sacherer [108].

4.5.1 Integer resonances

Assume that the space-charge force is given by Fy. = Sx = Kx. We then write the equation
of the motion as

" +vir = kx + F(x,0), (248)

where F'() represents lattice errors. We need to take into account the fact that space-charge
forces are centered on the beam:

2"+ vir = k(x —7) + F(0), (249)
where z is the coordinate of the center of the beam charge. Taking the average, we have:
"+ iz = F(0), (250)

which is an obvious finding that the center of the charge is not affected by the space-charge
forces. We now subtract Eq. 250 from Eq. 249 and obtain an equation for the incoherent
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motion:
(z—2)" +v3(x —7) = k(x — T) (251)
(x—2)"+ v} (x—T)=0, (252)

2 =g — k. This shows that the incoherent equation of
the motion does not have a driving term at an integer resonance. As a result, the incoherent
motion is not affected by dipoles errors. Obviously, the coherent motion becomes unstable
when the coherent tune vy in Eq. 250 becomes an integer, which is also true for individual
particle motion if space-charge forces are not considered.

with the incoherent tune defined as v/2

4.5.2 Half-Integer resonance

The incoherent space-charge approach to the resonance condition fails because it is based on
the assumption that the beam size remains constant. However, the beam envelope depends on
the oscillation amplitude of the individual particles. Thus, if the gradient error causes these
amplitudes to grow, the beam size also grows which in turn reduces the space-charge effect
(this, of course, applies to high-order multipole errors also). Clearly, the incoherent space-
charge approach is not self-consistent. More than that, using the KV beam, it is easy to show
[113], [108] that the effect of gradient errors in the lattice is exactly compensated by the space-
charge perturbation induced by those errors if v;,. = n/2. Here we present this interesting
cancelation effect, assuming for simplicity a symmetric mode of envelope oscillations. We start
with the following equation of motion

2" +v2r = a,uiz cosnd, (253)
2_ 2 _ 2 2 -
where v = 12, . = v§ — k/aj, and the envelope equation:
2
€ K
"= — —la+ — + ayjacosnd. (254)
a3 a

We now assume small oscillations of the beam radius a = a¢(1 + u) and obtain
u" + p*u = a, v cosnb, (255)

with p being the frequency of the symmetric envelope oscillations. Using the particular solution
for u, we get

V2 cos nb
a=ap {1 + h] (256)
Taking the variation of beam radius into account, Eq. 253 becomes
2K V2
"+ v = ( - a_ga”;f(]n? + anug>xcos nd, (257)
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which gives, after applying a phase-amplitude analysis, the following resonance condition:

2v(2v — n) = ayva <1 - L) (258)

ag(p? — n?)
Using p? = 402 + 2k/a3, the resonance condition becomes

4% —n?
20(2v —n) = anug%

— (259)
Thus, we have exact cancelation for the v = n/2 resonance. There is no ”quadrupole”
resonance at the incoherent tune. In a similar analysis for an antisymmetric envelope mode,
or in a general case for resonance of any order, this cancelation effect can be shown using the
Vlasov equation [114]. We also find that the half-integer resonance occurs at the coherent
frequency Qy (where we used 2y = p). The frequencies of second order coherent modes can be
easily obtained by linearizing the envelope equations for small perturbation. The expressions
are especially simple for a round beam with the same external focusing in both transverse
directions:

Qg,symm = 2’/3 + 2l/i2nc ~ 47/3 - 4V0AV7 (260)
Qg,antisymm = Vg + 31/2'271,0 ~ 41/3 - 6V0AV7 (261)

where the first part of these expressions are derived without the approximation of small space-
charge. As a result, they are extensively used in high-intensity linac studies.

Problem 4.4 Derive expressions given by Eqs. 260-261, assuming small oscillations of the
beam envelopes (use Eq. 245).

In circular machines, transverse tunes are typically split to avoid coupling. If this split
| oz — 1oy | is not small compared to Av/4, instead of the coupled modes described above we
have essentially decoupled motion with

Q2 ~ 412 — SpAv. (262)

We can now write the correct half-integer resonance condition. For example, for the symmetric
second order mode, it becomes

1
n=C0 ~2(y— §Al/). (263)

4.5.3 High-order resonances

In general, the resonance condition (here we use Baartman’s notation) can be rewritten as

n

— =1y — CpAv. (264)
m

For the half-integer resonance we obtained Cs symmetric = 1/2, Ca antisymmetric = 3/4 for the case
of similar tunes. Therefore, for the antisymmetric case the effective tune shift Av.;r = %AV is
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significantly smaller than one would expect based on the incoherent tune shift. For the split
tune case the difference is even bigger since Avg;; = gAz/. The concept of “effective” tune
shift is introduced here in order not to confuse it with the coherent tune shift of the rigid-
dipole mode, which arises from image effects. This effective tune shift arises from high-order
collective beam modes, which have nothing to do with the effect of images. The coefficients
C, can be easily obtained from high-order coherent frequencies which were derived for a round
beam by R.L. Gluckstern [109], and later extended to non-round beams by I. Hofmann [115].
Here we list coefficients for the low-order modes of a round beam in the case of similar tunes:

m =2 — > Csyymm = 1/2, Cogymm = 3/4,

m=3—>C=3/4,11/12,

m=4—->C=7/8,13/16,31/32.

m-—o00—>C=1.

From these coefficients it is clear that the standard approach of using the incoherent tune
shift for the resonance condition would not give an accurate predictions for low-order reso-
nances, especially for the half-integer resonance. For this reason, it seems possible to accumu-
late more current in high-intensity machines than predicted using the simplified (incoherent)
resonance condition.

4.5.4 Non-KV distributions

The coherent beam modes were derived using the KV beam. However, in the previous section
we showed that one can use rms envelope equation for non-KV distributions also, using the
rms quantities. This allows us to use second order coherent modes for non-KV beams. This
concept of KV equivalent beams has been used in studies of high-order resonances as well
[116], [112], [111].

4.5.5 Effect of images

In Section 4.2 we derived the contribution to the incoherent tune shift from images. Clearly,
if image effects are important they can add to the effective tune shift which would make the
resonance condition look similar to the incoherent one. Thus one has to estimate the impor-
tance of image effects when one intends to analyze the resonance condition in the presence of
space charge for a specific machine of interest.

4.5.6 Discussion

Space-charge induced tune spread causes the beam foot-print to span imperfection resonances.
For a coasting beam, there is general agreement that Sacherer’s theory is correct so that the
resonance condition is defined by the coherent frequencies. However, several effects should be
taken into account (including the effect of images) when one wants to apply it to experimental
observations. For bunched beams there is no good conceptual analytic framework. For long
ellipsoidal bunches the transverse modes are decoupled from the longitudinal one but it is
not clear to what extent the synchrotron motion will impact the resonance condition of the
transverse coherent modes. This question is currently under study but in some accelerators
where synchrotron motion is negligible (in the SNS the full injection process of 1000 turns
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takes about one synchrotron oscillation) it seems reasonable to assume that the impact of
synchrotron motion will not be important. In fact, some recent experiments and simulations
for the bunched beam in the LANL Proton Storage Ring (PSR) seem to support the above
discussion [117], [118].

4.6 Halo formation and emittance growth

The importance of space charge and halo formation in high-intensity linacs has been widely
recognized (see extensive literature in [127]; also some new developments were recently re-
ported [128]). In rings, however, an understanding of these issues appears to be even more
important: for economic reasons, in a linac one may have a sufficiently large bore to accept
the halo, while in a ring one must try to avoid halo formation because of a relatively small
beam pipe acceptance / beam size ratio. A discussion of halo formation issues in circular
accelerators was recently presented [113]. Here we briefly discuss various mechanisms of halo
formation in circular accelerators and their application to the SNS [148].

4.6.1 Development of parametric halo

The parametric resonance mechanism, which could be one of the major sources of space-charge
induced halo in linacs, is not necessarily the main source of halo in rings. The physics of this
resonance is described by the following equation:

2K
" 4 v = j—g 0 CO8 s, (265)

where v is the depressed tune, x is the space-charge parameter, y is the mismatch parameter
which describes small envelope oscillations, and p is the frequency of these envelope oscilla-
tions. The mechanism of halo formation is therefore the parametric resonance between p and
v, with v = p/2 being the dominant one. This resonance between the motion of individual
ions and collective beam oscillations is governed by the rms beam mismatch. It can be shown
that the main 1:2 parametric resonance is possible for any non-zero space charge. The halo
extent associated with this resonance is large not only for very strong tune depressions of the
order of n ~ 0.5 (typical in linacs) but also for tune depressions of only a few percent 1 ~ 0.98
(typical in high-intensity rings). The separatrix width of this 1:2 resonance is governed mainly
by the beam mismatch, although some dependence on tune depression does exist. In the limit
of zero space charge, the motion near the core is very regular, and the rate at which particles
are driven to the 1:2 resonance becomes very small; in addition, the unstable fixed points of
the 1:2 resonance move further from the origin. Therefore, for the space charge typical in
high-intensity rings (n ~ 0.98), it will take much more time for particles to be trapped in
the 1:2 resonance than for typical linac tune depressions. The rate of halo development thus
becomes the most important question when one tries to estimate the effect of the parametric
resonance on halo formation in rings. Computer simulations with a full-intensity KV beam
confirm both the existence of parametric halo at n ~ 0.98 and a very slow growth rate [129].
However, in the SNS the use of multi-turn injection makes the situation quite different from
the simplified assumption of a full-intensity beam. First, the final intensity is reached only at
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the end of injection, just before extraction; this leaves no time for a parametric halo to develop.
Second, the mismatched modes of the beam may be damped by the phase mixing associated
with multi-turn injection. To summarize, mechanisms other than parametric resonance may
be more important for halo development in high-intensity rings. Thorough studies of various
mechanisms that can lead to beam tail growth are required because of the low tolerance for
uncontrolled beam loss.

4.6.2 Effect of resonances

Machine resonances play a major role in halo formation. Most of the analytic studies can be
done using single-particle dynamics. When space charge is included one has to use the correct
resonance condition described in the previous section. The realistic prediction of emittance
growth, of course, has to rely on computer simulations which are described in Section 4.8.

Besides machine resonances there are also space-charge induced resonances. Their im-
portance was first shown for the dominant coupling resonance [130], and then for some non-
coupling resonances [111, 131]. Therefore, the choice of working point should also take into
account space-charge induced resonances. For the SNS the dominant space-charge coupling
resonance, 2v, —2v, = 0, was observed in numerical simulations with full-intensity beams and
multi-turn injection. An important question associated with this resonance is the instability
of high-order coherent beam modes, which was recently addressed [134].

Working points with tune split of the half-integer or more help to avoid coupling caused by
the space-charge forces and systematic magnet errors. However, the region close to the same
tune coupling resonance line is the largest region free of the imperfection resonances. Thus,
trying to avoid coupling necessarily increases the impact of various imperfection resonances.
Finding the best compromise between these effects requires to consideration of all these effects
in combination, and thus again heavily relies on realistic computer simulations.

4.6.3 Other mechanisms

The development of a beam halo also depends strongly on the choice of the painting scheme
and beam profile. As an example, we briefly discuss two painting schemes proposed for the
SNS.

Anti-correlated painting is designed to produce an elliptical transverse beam profile of
uniform density, but, in the presence of space charge, it generates an excessive halo [132, 149].
Thus, special schemes are required to minimize halo production [149]. Correlated painting
has the advantage of constantly painting over the beam halo, but even in this case careful
bump optimization is needed to achieve low beam loss.

In the case of correlated painting, the beam is painted to a square shape; this results in
a “singular” distribution along the diagonals [148], [133]. The inclusion of space charge leads
to rapid azimuthal diffusion and some spreading in the radial direction. For this case the 2-D
beam densities, based on simulations, agree well with analytic predictions [133].
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4.7 Coherent Instabilities

In an accelerator, the beam of particles does not propagate in a free space. Beam surroundings
(pipes, cavities, pumping holes, etc.) influence the fields around the beam, which may make
the beam unstable. We already started to consider the beam environment by discussing image
effects in Section 4.2. However, in our previous description fields remained in phase with the
motion of single particles or with the beam centroid, which resulted in simple incoherent or
coherent tune shifts, respectively.

Clearly, the beam-environment interaction is more complex. For example, assume a beam
passing through a cavity. It will excite fields in the cavity which can in turn act on the
remaining portion of the beam or on a subsequent beam bunch. Such fields are typically
referred to as wake fields. Therefore, the beam-environment interaction involves a study of
the wake fields or coupling impedance which is an inverse Fourier transform of the wake field.

The subject of coherent instabilities is very important but also is very advanced. For
detailed description we refer the interested reader to Alex Chao book [95] and K.Y. Ng lectures
[158]. The typical electron bunch length can be of the same order or even shorter than the
wavelength of the instability driving force which requires taking in consideration a bunch
structure. On the other hand, the length of proton bunches are usually larger than the
wavelength of perturbation or instability driving force which allows to consider them locally
as a coasting beam. For this reason, we mostly limit our discussion to the stability condition
of coasting beams which has direct application for a very long beam bunch in high-intensity
machines under design. We adopt our quick introduction to this subject from [96]. The
bunched beam structure would support oscillation modes within the bunch similar to those
of a coasting beam. However, the bunch length sets the resonance condition for the standing
wave rather than the machine circumference. In addition, there would be coupled-bunch
modes which are characterized by definite phase relation between the oscillations from bunch
to bunch.

4.7.1 Coupling Impedance

In our discussion of stability conditions we will use the concept of the coupling impedance,
which is defined below. Assume a harmonic excitation current of amplitude I(w) which excites
a harmonic field with complex amplitude F,(w). The longitudinal coupling impedance is then
defined as

[ E.exp(jkz)dz

Z)(w) 7

(266)

The transverse coupling impedance is defined as the integral of the deflecting fields over one
turn normalised by the dipole moment of the excitation beam current

7 () = j J [Er + ﬂcBe] exp(jwz/v)dz

2
- , (267)

where Ay is the horizontal or vertical offset of the beam from the axis.
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At low frequency the impedance is dominated by the skin effect of the vacuum chamber;
at medium and higher frequencies the impedance behaves as that of a broad band resonator
- thus the word “broadband” impedance. At certain high frequencies there will be strong
local resonances, for example, from cavities. A typical example of impedance budget for a
high-intensity proton machine is shown in Table 10, using the SNS case.

Table 10: SNS impedance budget (low frequency (below 10MHz) approximation.)

Z/n Z,
Space charge -j196 -j7,720
Extraction kicker 354342 21-n+j200
(50 Q2 termination)
RF cavity requires damping of parasitic modes -
and active feedback system
Resistive wall (j+1)0.69 (14j)6.23
(at wp)
Broadband
BPM j4.0 j58.0
Bellows j1.53 j13.8
Steps j1.60 j14.4
Ports j0.49 j4.42
Valves jO.15 j1.35
Collimator j0.22 j1.98
Total BB j8.0 j94.0
Unit Q kQ/m

4.7.2 Landau damping

From the knowledge of the impedance seen by the beam it is possible to predict whether the
beam is stable or not. The natural stabilizing mechanism against collective instabilities is
the synchrotron or betatron frequency spread of particles in the beam. This stabilization is
known as Landau damping [152]. In an accelerator, the spread in natural frequencies of the
beam comes from various sources. Such a spread occurs due to the dependence of the beta-
tron frequencies on the energy of the particles together with the energy spread of the beam.
Another source of the spread are nonlinearities in the focusing system as well as in self-fields
of the beam which cause a dependence of betatron frequencies on particles’s amplitude. In the
longitudinal case the source of frequency spread depends on whether the beam is bunched or
unbunched. For bunched beams, a spread of synchrotron frequency can result from nonlinear-
ities in the rf focusing voltage. For unbunched beams, the spread comes from the dependence
of the revolution frequency on the particle energy. If a large spread of frequencies provides
a fast decay of center-of-mass response the effect of the impedance can be compensated and
the instability is suppressed. The Landau damping mechanism is automatically included in
stability analysis when one applies the Vlasov equation as demonstrated in the next section.
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4.7.3 Longitudinal instability in a coasting beam

It is natural to describe particle distributions in a circulating beam in terms of the angular
position and the angular momentum. Let f(©,p,t) be a function describing the beam distri-
bution with azimuthal angle © = 27s/C and longitudinal momentum p. We start with the
Vlasov equation

p2 F©,p.1) = 0. (268)

ot

A particle at position s sees a wake force from all beam particles that passed the same location
earlier. This force, averaged over the ring circumference, is

Zy .
p=— % I,6i(=10) (269)
0

where we used the fact that the beam-induced voltage experienced by a particle during one
turn is Z 1€/ "0 with I(s) = I + L/ "®) Tt is reasonable to make a trial function
solution with the same form as the current perturbation:

F(©,p,t) = fo(p) + fr(p)e’ "9, (270)

Inserting this trial function into Eqs. 268- 269 gives

78 = ) u(p)e 1) — i) 2 ) = ()

with w = ©. Here, f; in the last term was neglected since it is small compared to fo.
If we now integrate over the momentum spread in the beam we obtain an expression for
coherent beam behavior

, ' , d d
[,ei(Qt=n0) _ Cie%oznflej(m_"@)/ Mdp, (272)
0

beam TW — Q

which simplifies in the linear approximation to

dfy/d
2WSZW/ oo g, (273)
beam

1 =
nw — <

N
Copo
which is the dispersion relation linking the frequency of the disturbance €2 with its wavelength
represented by n. Here, the compaction factor n is defined as Aw = nweAp/py. Using
the dispersion relation, it is possible to investigate beam stability. The collective frequency
has to be solved from the dispersion relation for each revolution frequency. If there is no
energy spread the dispersion relation given by Eq. 273 is easily solved. Above transition
(n > 0), the solution will be unstable for capacitive impedance 7 = jZ;. As a result, the

longitudinal space-charge impedance becomes the source of instability known as “negative
mass” instability. The stability criterion with momentum spread was first derived for an
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rf cavity. The dispersion integral in Eq. 273 was solved by assuming that the perturbation
frequency has a small imaginary part and assuming a Lorentz beam distribution:

nZo|dfrey JdE|AE?

2 2
moc?roN f2,,

Z ) cavity whm, (274)

where Zj is the impedance of free space, r is the classical radius of the beam particle and
AF is half of the energy spread at half maximum of the distribution. The dispersion relation
can also be rewritten in a compact form

1 = sign(n)(U" — jV')S, (275)

where S represents the normalized dispersion integral. The parameters U’, V' were introduced
by Ruggiero and Vaccaro to have a compact form for the dispersion relation. These parameters
are proportional to the parameters U,V introduced earlier by Neil and Sessler, which have
the advantage of being closely related to the induced voltage (7 = j(U + jV))/ely). The
dispersion integral depends greatly on the particle distribution in momentum or revolution-
frequency space. The stability curves in the U', V' space (impedance plane) were studied by
Ruggiero and Vaccaro for various distributions [119]. Then an approximate condition was
proposed [120], which is known as Keil-Schnell criterion:

FEo n [Apfwhm] 2
e )

Zy/n| < F
R A

(276)
where Fj is a form factor depending on beam distribution. Thus, for beam stability the
impedance seen by the beam should be minimized. One can see that large value of the
momentum compaction 1 helps, as well as large value of Ap/py. The stabilization effect
by momentum spread is called Landau damping. Figure 53 shows schematic plot of the
longitudinal stability diagram for a Gaussian distribution.

The Keil-Schnell approximation, which uses a circle assumption in the impedance plane
(see Fig. 53), works well for energies above transition. Below transition, on the other hand, the
main source of the longitudinal impedance is the space charge (only imaginary contribution)
so that the real part of the impedance could be orders of magnitude smaller. This results
in a significant deviation from the circle approximation, and is the reason why for energies
below transition Keil-Schnell condition was significantly overcome. Also, in such a “space-
charge regime” in the stability diagram (in U’, V' space) one could expect stabilization due
to nonlinear behavior [121]. For additional discussion see, for example [122].

The wavelegth of such instabilities is much smaller than the length of the bunch. Therefore,
the high-frequency growth is called microwave instability. Microwave instabilities predicted
by Eq. 276 are rare or nonexistent below transition.

4.7.4 Transverse instability in a coasting beam

The underlying physics for transverse instabilities is similar to that for the longitudinal case.
The calculations of the transverse coupling impedances are more complicated than those of the
longitudinal impedances. However, in many cases a simple approximate relationship between
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Figure 53: Schematic longitudinal stability diagram of a beam with Gaussian distribution.

transverse and longitudinal impedances can be applied which allows one to avoid complicated
calculations. If the transverse impedance is found, then the stability condition can be again
obtained using the Vlasov equation [123]. The transverse stability condition is given by

Eo 4v078 Aputm {(n - 5] , (277)

7| < Fh—
|21 ¢ IR Do

where F, is a form factor close to unity for well-behaved distributions. Here we used the
convention v for the tune, and £ for the chromaticity, which is the tune change due to momen-
tum (dv = EAp/po). In case the instability growth rate is much faster than the synchrotron
oscillation, one may obtain a stability criterion against transverse microwave instability for
bunched beams [124]. This is done by simply replacing the unperturbed beam density of an
unbunched beam by the peak density of a bunched beam because, in the fast growing regime,
the instability occurs locally and thus the peak beam density would determine the stability
condition.

The Landau damping (necessary for stability) can be enhanced by introducing the ampli-
tude dependent tune spread with chromatic sextupoles and octupoles. There is still discussion
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in the community as to how to include correctly the space charge in the transverse instabilities
models, and the interested reader is referred to [125], [126].

The typical measures aimed to prevent instabilities consist of minimization of the coupling
impedance of the vacuum chamber by screening any abrupt cross section changes (bellows,
vacuum manifolds, etc.) and proper design of protruding elements like pick up and cleaning
electrodes.

4.7.5 Other single-bunch instabilities

Here we briefly describe some other basic instabilities in addition to the microwave instabilities
discussed above.

Robinson instability This instability addresses the question of phase stability in circular
accelerator. The RF cavities are tuned so that the resonance frequency of the fundamental
mode wpg is very close to an integral multiple of the revolution frequency wy of the beam.
As a result, the wake field excited by the beam in the cavities contains a major frequency
component near wr &~ hwy, where integer h is called harmonic number. Above the transition
energy, the beam will be unstable if wg, is slightly above hwy and stable if below [153]. Below
transition energy the dependence of the revolution frequency on energy is reversed which
changes the stability criterion.

Negative mass instability The revolution frequency increases with energy gain below
transition and decreases above it. In other words, above transition energy the particle slows
down if it gain energy (“negative longitudinal mass”). As a result, some spontaneous longitu-
dinal density fluctuation is enhanced above transition resulting in negative mass instability.
The unbunched beams are intrinsically unstable longitudinally above transition. This requires
damping mechanisms such as Landau damping, which was discussed in the previous section
on longitudinal stability.

Head-tail instability Short-range transverse wake fields excited by particles at the head
of a bunch may excite oscillations at its tail. Synchrotron motion brings these particles again
to the head and they continue to excite particles behind. Such oscillations will grow if they
add in phase. If the chromaticity is negative the only unstable azimuthal mode is m = 0 with
all other high-order beam modes being stable. Such unstable beam mode can be damped
with a beam damper. Also, chromaticity correction is typically required which is achieved
with chromatic sextupoles. Various head-tail modes of oscillations can be excited shifting
the chromaticity to the unstable directions. These modes were first observed in the CERN
PS Booster [154]. Some recent observations of head-tail instability at RAL ISIS, CERN PS
and KEK PS were reported at BNL’s workshop on instabilities in hadron machines [126].
The head-tail instability can be cured with the tune spread, appropriate choice of natural
chromaticity, reduction of wall impedance and dedicated feedback system.
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Transverse mode coupling instability (TMCI) The TMCI instability is also called
fast/strong head-tail instability. Such instability occurs when the frequencies of two neigh-
boring head-tail modes approach each other due to detuning with increasing current during
acceleration. The fast head-tail was observed at PEP, LEP, SPS and electron machines with
short bunches but not so far in hadron machines with long bunches. It was recently reported
that space-charge tune shift can strongly damp TMCI [155].

E-P instability The electron-proton (e-p) instability was first diagnosed in the CERN ISR
[156] and LBL Bevatron [157]. This instability is believed to be responsible for the fast
transverse instability observed at LANL PSR. The e-p instability is considered a possibility
for the proposed high-intensity machines. Among possible cures are coating of the vacuum
chamber to reduce secondary electron emission and effective control by Landau damping.

4.8 Computer Simulations
4.8.1 Overview

Simulation of space-charge effects is one of the most computer intensive problems in particle
tracking. The most widely used method for modeling intense charged particle beams is the
particle simulation technique [135]. In this approach, one integrates the equation of motion for
individual particles taking into account both the external fields of the system and collective
fields of the beam. The collective fields may be obtained using Particle-Mesh methods, which
are referred to as Particle-in-Cell (PIC) methods. This approach consists of placing the charge
on a numerical grid and solving the field equations on the grid. The required steps are:

e Charge deposition : Place charges on a numerical grid.

e Field solution : Solve the field equations on the grid.

e Field interpolation : Interpolate the fields at the particle position based on values at
the grid locations.

Although PIC methods are the basis of most of the codes, they suffer from the presence of
statistical noise. The approach to avoid this is to use Vlasov/Poisson direct solvers, where one
defines the particle distribution function on a grid in phase space. However, such simulations
require large memory resources. For example, the memory requirement in a 2-D simulation
grows as the fourth power of the grid size in one dimension (such simulations are now possible
with parallel computing). For comparison, 2-D simulation with 128* grid requires 268 million
grid points, while the 3-D case with 128° would require 4 trillion grid points, which is still
beyond present-day computer resources. In this section we limit our discussion to particle
simulation codes.

In particle simulation codes space charge may be treated in the full 6-dimensional phase
space of the particles (3-D code), in the 4-dimensional transverse space with correction for the
longitudinal dimension (23-D code) or only in the 4-dimensional transverse space (2-D code).
It is not always possible, as well as necessary, to use fully 3-D space-charge codes. Clearly, it
depends on the parameters of the beam for which the code is intended. For example, for high-
intensity linacs, which can have tune depression as high as 50%, space-charge effects becomes
the crucial. Beam bunches with small aspect ratio (sometimes almost a spherical bunch)
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require 3-D space-charge codes, with correct modeling of space-charge coupling. This was
shown to be important for detailed prediction of beam halo and emittance growth. Also, the
necessity to predict beam losses at the 107¢ level in high-intensity linacs under design pushed
the number of particles in simulations to a level where a single particle in simulation already
corresponds to just a few real particles. This became possible due to recent development
of parallel computing and the DOE Grand Challenge in Computational Accelerator Physics.
An example of a beam dynamics code developed under this program is IMPACT, specifically
written to model beam dynamics in high-intensity linacs [136].

For high-intensity circular machines one still needs to use the macro particle approach
since tracking with a realistic number of particles (10'3 — 10'*) is far beyond the present-day
computer capabilities. Also, in most of the high-intensity circular machines the beam aspect
ratio is quite different from the one in linacs. For example, in the SNS, the beam transverse size
is a few e¢m while its length is around 200 m. Clearly, implementing a fully 3-D space-charge
algorithm for such a beam would be very challenging. However, because of the large beam
aspect ratio, the transverse and longitudinal space-charge forces are essentially decoupled.
As a result, most questions may be answered without full 3-D space-charge representation.
Nevertheless, the correction due to the longitudinal motion should still be taken into account.
Here we list some of the codes developed for high-intensity circular machines which are widely
used for particle tracking with space charge and a realistic machine lattice.

e ORBIT [137] (in C' + +), ORNL/BNL - developed for the SNS project.

e ACCSIM [138] (in Fortran), TRIUMF, Canada - developed for Kaon Factory project.

e SIMPSONS [111] (in Fortran), KEK, Japan - originally developed for the SSC; now used
for Japanese Neutron Spallation Source project.

e WARP [139] (in Fortran), LLNL - developed for heavy-ion Fusion project.

e Track2D, Track3D [140] (in Fortran), Rutherford Appelton Lab, UK - now used for the
European Neutron Spallation project.

The beam power of the proposed high-intensity circular machines is an order of magnitude
above that of existing accelerator facilities, which imposes extremely strict requirement on
uncontrolled beam loss at the 10~* level. In order to address such low-level losses we need to
closely reproduce all complex physics of a realistic machine. This includes not just the space-
charge treatment but also realistic representation of magnet errors and non-linear particle
motion. For example, the environment of the Unified Accelerator Libraries (UAL) suits such
purposes [141]. The UAL’s environment allows one to develop the project-specific packages
which can include the best available codes and algorithms. Therefore, such a package was
also developed for the SNS project [142], and it is currently used for beam dynamics studies
[143]. For detailed description of this SNS package we refer the interested reader to [143]. As
an example, in the next section we describe some basic features of the SNS/UAL simulation
package.

4.8.2 The SNS simulations using UAL

Some of the important features which were implemented, benchmarked, and used in the
SNS/UAL package are: injection painting, magnet fringe fields, magnet non-linearities and
space charge.
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Injection painting. During the multi-turn injection into the SNS ring, the beam is painted
over a large phase space volume in order to reduce the space-charge tune shift and to minimize
the number of traversals through the stripping foil. The development of beam halo depends
strongly on the choice of painting scheme [148, 149]. Implementation of this dynamical process
is based on the ACCSIM approach. However, the control of different scenarios is programmed
directly with the Perl Application Programming Interface (API) that provides simple access
to the UAL packages.

Fringe fields. Since the aperture of the ring magnets is comparable to the magnet lengths,
fringe field impact is very important. The fringe fields are included through the Taylor maps
extracted from the fringe field models. Both realistic three-dimensional (3-D) fringe field
calculations with MARYLIE [145] and “hard-edge” approximation show the importance of
the longitudinal field derivatives, and produce very similar behavior [146]. Currently, we are
using maps (up to 5th order) based on both the “hard-edge” formulas and the realistic 3-D
fields.
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Figure 54: Kinematic non-linearity X-Y tune foot-print. Particles are launched in five different
transverse directions with the amplitudes going up to 480 7 mm mrad. Data obtained with
MARYLIE is presented by color circles, while UAL’s data is given by white dots inside the
color circles.

Single-particle dynamics and non-linearities. Special characteristics of the SNS ring
are large beam emittances (up to 240 7 mm mrad), and large beam pipe apertures. Not
surprisingly, this brings a variety of non-linear effects which are a direct consequence of large
particle amplitudes. Such non-linearities can shift particles in undesired directions, dramat-
ically decreasing the dynamic aperture. The study and understanding of these effects thus
becomes very important. The simulation of non-linear magnet fields and misalignments were
done with the TEAPOT [144] approach. TEAPOT approximates magnet elements by thin
multipoles but treats the non-linear equation of motion exactly. To be confident in our non-
linear dynamics studies, the UAL was benchmarked against MARYLIE 3.0 [145], which is a
thick element code with an approximate treatment of equations of the motion. Some results
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of this benchmarking were presented in [147]. Figure 54 shows excellent agreement between
these two codes for the tune shift due to the kinematic non-linearity, which arises from high
order terms proportional to the transverse momenta p,, p, in the expansion of the standard
square-root relativistic Hamiltonian. This plot is generated by launching particles in five
different transverse directions with the amplitudes going up to 480 7 mm mrad (neither non-
linear elements nor magnet errors are present in the lattice). Data obtained with MARYLIE
is presented by colored circles, while UAL’s data is given by white dots inside the colored
circles.
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Figure 55: 2-D density plot (X-Y) for correlated painting with the square-root bump function
(without the space charge), using SCMapper/ORBIT algorithm.

Multi-particle dynamics with space charge. The space-charge effect has the largest
impact on beam dynamics and halo growth in the SNS accumulator ring, and has to be
included in the common model. It is currently implemented through the ORBIT space-charge
module, detailed description of which may be found, for example, in [129]. Briefly, this module
is based on a Particle-in-cell (PIC) method employing a bilinear distribution of macroparticles
on the nodes of a rectangular grid with subsequent use of a fast-Fourier-transform method to
approximate the full non-linear space-charge force.

For the space-charge studies two independent integrators were developed [143]: SCMapper
and SCTracker. The SCMapper, which adopts linear matrices approach for ring element
treatment, was extensively used to ensure perfect agreement between the UAL and ORBIT
codes. The SCTracker contains the ORBIT space-charge algorithm but treats ring elements
based on the TEAPOT approach which allows one to include magnet errors in a consistent
manner. Similar to a single-particle dynamics, it includes all non-linear features of the motion
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Figure 56: 2-D density plot (X-Y) for correlated painting with the square-root bump function
(with the space charge), using SCMapper/ORBIT algorithm.

even in the absence of magnet errors.

Here we present examples based on correlated painting which results in a square shape
beam desired by the target requirements. In Figs. 55 and 56 we present 2-D density plots (X-
Y) for the resulting beam distribution based on the square-root bump function without and
with space charge, respectively. Simulations were done with the SCMapper without magnet
errors. The inclusion of the space charge leads to a rapid azimuthal diffusion with some
spreading in the radial direction. For this case the 2-D beam densities, based on simulations,
agree well with analytic predictions [133]. Exact treatment of non-linear motion (without
magnet errors) via the SCTracker package leads to an additional spreading along the diagonals
[143].

Computational efficiency The requirement of beam loss predictions at 1072 — 10™* level
forces us to use a large number of macro-particles in our simulations to obtain good statistics.
Our primary goal was to include all necessary physics in simulations rather than use large
number of particles but with simplified physics (improvement of some algorithms is currently
in progress [151]). The standard compromise between speed of calculation and physics is not
quite applicable to our case since the requirements on beam losses is an order of magnitude
smaller than those achieved in existing high-intensity machine. We thus need to keep all
required physics in order to produce credible predictions of beam loss. At this point we note
that the speed of the integrator becomes very slow with most of the physics correctly included.
The typical run for 50K particles with the full-injection scenario, space charge, fringe fields
and magnet errors takes about 50 hours of 1 CPU time on a Sun station. This resulted in
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our decision to deploy UAL on the parallel cluster. A parallel version of UAL was recently
successfully developed and we now perform the SNS space-charge simulations on the parallel
cluster [150].
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5 Measurement, Correction, Commissioning

129 June 28, 2002



High-Intensity Circular Accelerators Design Example

6 Design Example: Spallation Neutron Source Accu-
mulator

6.1 Layouts

Schematic layout of the Spallation Neutron Source accumulator ring is given in Figures 5, 7,
and 8.

6.2 List of Parameters

Table 11 lists the major parameters of the Spallation Neutron Source accumulator ring.

Table 11: Major machine parameters for the original hybrid lattice Spallation Neutron Source
ring.

Quantity Value unit
Circumference 220.88 m

Average radius 35.154 m

Injection energy 1 GeV
Extraction energy 1 GeV

Beam power 2 MW
Repetition rate per ring 60 Hz

Number of protons 2.08 10t

Ring dipole field 0.7406 T

RF harmonics 1,2

Peak RF voltage, h =1 40 kV

Peak RF voltage, h = 2 20 kV
Unormalized emittance in x or y (cor. painting) 120 7 mm mrad
Unnormalized emittance (99%) (anti-cor. painting) 160 7 mm mrad
Betatron admittance 480 m mm mrad
Momentum acceptance (160 7 mm mrad) + 2 %
Momentum acceptance (zero amplitude) + 3.8 %

Magnetic rigidity, Bp 5.6574 Tm
Bending radius, p 7.6389 m
Horizontal tune 5.8 — 6.8

Vertical tune 4.8 - 5.8

Transition energy, vyr 4.95 GeV
Horizontal natural chromaticity —7.5

Vertical natural chromaticity —6.3

Number of super-periods 4
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6.3 Lattice

! Lattice of the SPallation Neutron Source Accumulator Ring
(draft)
ANG:= 2*PI/32
EE := ANG/2
Brho := 5.6575
lbnd := 1.5
1 := 0.5
matching value
BEXD := 2.428
BEYD := 13.047
0Z : DRIFT, L = 0.0
0Q1 : DRIFT, L = 0.0
0Q2 : DRIFT, L = 0.0
0Q3 : DRIFT, L = 0.0
BL: Sbend, L=1bnd/2, Angle=EE, E1=0., E2=0.
BR: Sbend, L=1bnd/2, Angle=EE, E1=0., E2=0.
BND: Sbend, L=1lbnd, Angle=ANG, E1=0.0, E2=0.0
for achromat in x
KF := 4.65962
KD :=—4.94124
QH =6.3
Qv =5.8
MUH = QH/4.0
MUV = QV/4.0
QDH : QUADRUPOLE, L = 1q/2, K1 = KD/Brho
QF : QUADRUPOLE, L = 1q, K1 = KF/Brho
QFH : QUADRUPOLE, L = 1q/2, K1 = KF/Brho
QD : QUADRUPOLE, L = 1q, K1 = KD/Brho
0OARC : DRIFT, L = 1
DM : DRIFT, L = 3.8
KMAT = -3.405
KS2 = 4.298150
KS3 = -4.586139
1q1 = 0.25/2
192 =0.7/2
1q3 = 0.55/2
01 : DRIFT, L = 6.85
011 : DRIFT, L = 01[L]1/4
02 : DRIFT, L = 0.4
03 : DRIFT, L = 6.25
031 : DRIFT, L = 03[L]/12
QMAT : QUADRUPOLE, L = 1q/2, K1 = KMAT/Brho
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Q2 : QUADRUPOLE, L = 192, K1 = KS2/Brho

Q3 : QUADRUPOLE, L = 193, K1 = KS3/Brho

acd : line = (QDH,0ARC,BND,OARC,QFH)

acf : line = (QFH,0ARC,BND,OARC,QDH)

acfl : line = (QFH,DARC,BND,0ARC)

ac : line = (acd,acf)

arc : line = (ac,ac,ac,ac)

sc : line = (QMAT,QMAT,011,011,011,011,Q2,0Q2,Q2,02,Q3,&

0Q3 Q3,031,031,031,031,031,031,031,031,031,031,031,031)
insert : line = (sc,0Z,-sc)
SP : line = (insert,-acfl,-acd,ac,ac,acd,acfl)
ring : line = (4%SP)

Use, SP
SELECT, OPTICS, RANGE = #S/#E
OPTICS,FILENAME = "sp.optics",&
COLUMNS = NAME, KEYWORD, S, L, KiL, BETX,DX, BETY,DY
PRINT, FULL

use, ring
SELECT, OPTICS, RANGE = #S/#E
OPTICS,FILENAME = "ring.optics",&
COLUMNS = NAME, KEYWORD, S, L, KiL, BETX,DX, BETY,DY

PRINT, FULL
TWISS, TAPE
stop

end
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7 Special Topics

7.1 Beam Loss Mechanisms

Here we briefly describe some of the typical beam loss mechanisms which apply to the high-
intensity proton rings.

7.1.1 “First-turn” losses

There are two major causes of beam loss which are usually referred to as “first-turn” losses
[159]:

Scattering at the foil First mechanism is nuclear and large-angle Coulomb scattering of
the circulating beam in the injection stripping foil. Before a recent upgrade at LANL PSR
this type of loss accounted for 0.3% beam loss. By choosing the direct H~ injection scheme
and minimizing beam foil traversals this loss can be significantly decreased [159].

Excited H® states A fraction of injected beam interacts in the stripper foil and is converted
to excited states of H°. As those neutrals pass through the magnetic field required to separate
the different charge states, they can be stripped by the Lorentz force. Depending on when
they strip, their subsequent trajectories can be outside the beam core. The Hs that exit the
foil will populate the various hydrogen states n, where n denotes principal quantum number.
The behavior of excited states of H? is well understood and can be calculated to good accuracy
by a number of methods. A widely used approach is the fifth-order perturbation theory of
Damburg and Kolosov [162]. The probability P(z) for H%(n) to survive to a point located
at coordinate z in the fringe field of the magnet is given by solution of the basic loss rate
equation

dP(z) _ —P(2) _ _P(Z)F(Z)’ (278)

dz 7(z)Bye hB3vc

where [' is the width of a given parabolic Stark state and 7 its field-dependent lifetime. This
give

P(z) = exp ( — /Z F(s)ds). (279)

hBvye Joo

The production of HY states can be strongly reduced by choosing an appropriate foil thickness.
An upgraded design of the injection scheme at LANL PSR allowed to reduce this loss from
0.3% to 0.1 — 0.17% (with 0.05% calculated) [159]. In the SNS design, to prevent stripping of
H? in n = 4 and lower excited states the injection stripping foil is located at the downstream
end of the injected dipole with the field of subsequent dipole magnet 2.4 kG. The fringe field
of the injected dipole is shaped so that stripped electrons spiral down to where they can be
easily collected. With such a design further reduction of this type of loss below 10~ level is
expected [160].
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7.1.2 Imperfection resonances

Machine resonances are a fundamental source of beam halo in circular accelerators. A very
careful choice of the working point and appropriate corrections schemes are required to reduce
beam loss to a 1073 level and below.

30

% of partciles outside

0.00022 0.00024 0.00026 0.00028
Total emittance pi mrad

Figure 57: Beam halo at the end of multi-turn injection for (v,,v,) = (6.4,6.3); a) blue
color shows halo due to the space charge alone b) red color corresponds to the case of both
systematic and random magnet field errors at a few units at 10~ level, chromatic sextupoles
and quadrupole fringe fields c) yellow color shows an additional effect of z, y misalignment of
0.5 mm and magnet tilt of 1 mrad.

As an example, we show resulting beam halo for two different working points of the SNS
[161]. Figure. 57 shows the case for (v, v,) = (6.4, 6.3) where several imperfection resonances
(including 3rd order skew-sextupole resonance) are crossed. This results in a significant halo
at the end of multi-turn injection requiring careful correction of resonances. Figure 58 demon-
strates the case of (v, 1,) = (6.23,6.20) when no major imperfection resonances are excited.
As a result, beam halo at the end of multi-turn injection is insignificant.

7.1.3 Space-charge effects

After machine imperfection resonances are corrected most of the “storage” beam losses are
associated with space-charge effects. For example, space-charge driven resonances could be
an important source of halo formation. The choice of working point should be done by taking
these type of resonances into account. Particle-core parametric resonance, which is believed
to be an important source of halo generation in a proton linac, is expected to be unimportant
in a ring with multi-turn injection [148]. In general, space charge can be alleviated by lon-
gitudinal manipulation (double RF, barrier cavity, etc) to enhance bunching factor, painting
and controlled injection or by simply raising the injection energy.
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Figure 58: Beam halo for (v,,v,) = (6.23,6.20); a) blue color shows halo due to the space
charge alone b) yellow color shows halo when magnet errors of expected magnitude are in-
cluded.

7.1.4 Coherent instabilities

An attempt to reach the highest intensity possible is typically a long accelerator project
struggle with coherent instabilities. Such instabilities (some of which are described in the
section on instabilities) can strongly limit the high-intensity operation of a machine. This
results in a number of preventive measures which minimize the coupling impedance of the
vacuum chamber, design of feedback damping systems and other cures depending on the
specifics of the instability.

7.1.5 Ramping loss

If instead of an accumulator ring the synchrotron approach is chosen, one has to deal with
an additional significant beam losses due to ramping and RF capture. Compared with rapid
cycling synchrotron, an accumulator ring simplifies the capture process and avoids ramping
complications. The next generation of high-intensity machines set limitation on allowed beam
loss at 10~ level. Trying to get beam losses to such a low level in s synchrotron will be a very
challenging task.
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7.2 Scaling law for magnet fringe-field impact
7.2.1 Rms momentum kicks, general multipolarity

Following the symmetry condition (158), we can rewrite the field components (149), keeping
terms of the expansion to leading order:

(@ +iy)"ba(2)  (z+iy)" [(n+ 3)z —i(n + 1)y] b ()

B, (z,y, 2) zjm{ +O(n+4)}

n! 4(n + 2)!
T+ 1y)"b, (2 x +y)" T (n z—i(n 2z
By(xyyyz):%{< ritfhale) o+ i) 1(713”)!( +3)y]b (>+0(n+4)} |
T i n+1 EJ =
B.(x,y,z) :’Jm{( +(g)+ l)b! ) +O(n+3)}

(280)

where the functions O(j) represent polynomial terms in the transverse variables z,y of order
greater or equal to j. These expressions stand for n > 0. The special case of the dipole will
be treated in a subsequent section.

For a particle traversing the magnet with a horizontal deviation x and vertical deviation y
from the center, the impulse (i.e. change of transverse momentum) imparted by the nominal
field component is

Ap(;; =— € f Usz(xayaz)dZ ~ - e’ljzaneff 6{(x _l|_ Zy) }
body g (;M ) (281)
Ap(; — e f UZBI(ZU, Y, Z)dz ~ e'Uzaneff ! Y
n.
body

where Lesr = fbody bn(2)dz /b, is the effective length of the magnet, and b, is the nominal field
coefficient in the body of the multipole magnet.

The impulse due to the fringe field at one end of a magnet is defined as the effect of field
deviation from nominal, from well inside (where the nominal multipole coefficient is assumed
to be independent of z) to well outside the magnet (where all field components are assumed
to vanish.) These will be the limits for subsequent integrals.

The momentum kick imparted by the fringe field can be represented as follows:

ApL, = ApL (1) + AL, (L) (282)
where
Apl(l)= e [ v.yB.(z,y,2)dz
A== ¢ | vrBalay s (283)
ringe
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are the momentum increments of the particle caused by the longitudinal component of the
magnetic field and

Apg;(J_):— e f v, By(z,y, z)dz
fringe

Ap{(L) = e [ v.By(r.y,2)ds (284)
fringe

are the momentum increments of the particle caused by the transverse components of the
magnetic field. Using the leading order expressions of the magnetic field, we obtain the
following relations

Mol e (i)
B (285)
Apf = s am (o i)
and
Api(l) = %_:bln)!%e {(z+iy)" [(n+ zz"+ (n+3)yy' +i(n — Vay —i(n + 1)ya']}
Apj(L) = %Jm {(@ +iy)" [(n+3)zz" + (n + )yy' +i(n + D)y —i(n — 1ya'l}

(286)

for the momentum increments due to the longitudinal and transverse component of the field,
respectively. The total momentum increments due to the fringe field are therefore

ev,b,

Apf e (i) [+ ) = )0+ i) + 20+ i)
B (287)
Apf xR (e i) [+ e = i)+ i) = 207+ i)

In order to evaluate the contribution coming from the fringe part as compared to the body of
the magnet, we first have to compute the total rms transverse momentum kick imparted by

the fringe field (Ap) )oms = \/((Ap£)2> + ((Ap})?), where the operator (.) denotes the average
over the angle variables. An equivalent expression stands for the deflection due to the body
part of the field. After averaging over the angles and some lengthy calculations(see [26], the
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rms transverse momentum kicks can be expressed as:

_ " 1/2

an 2(n—1 n— n— m_2—m
(AP )ims ~ m > ( S:L_ l )> ( )5 ‘Brenlel Zgan 2y Bry)Ene,

1=0
B Lot [ 2(n — 1) v |
€V, 0n L n n— n— n—
(Api)rms%ﬁ[§<l>< n—1 >< )5 'Blex ”]
(288)

where the bars on the (3’s denote their average values over the body of the magnet. The
coefficients g, ;m, given by

gy — L7 HDEEDE) 2@+ DG+ R+ 3)ay)
Gn,1,0\Cz ys P,y — (l_|_1)(l_|_2)

_S(n +1)(n—1)(20 + 3)(—1)1(227)axayﬁy
GBI+ 1)(1+2)

[(n? +4n +5) (20 +1)(7) + 2(5n + 2in + 2) (=)' (3)] [1 + (2n — 20 + 1)) B,

Ini (s Boy) = Boln — 1+ D)1+ 1)

N (R +4n+5)(7) —2(n+2)(=1)'(%)] 2n — 20+ 1)[L + (20 + 1)y ] B,
By(n—1+1)(1+1)

8(n+1)[2+1)(7) + (n—1(-1)'(N] (2n — 20 + Dayay
(n—1+1)(+1)

@+ () 4+ 20D (5)] 2n =20+ 1)[1+ (2n — 20 + 3)ay]
ntlOsr Bry) = (n—1+1)(n—1+2)

(289)

depend on the twiss functions and on the multipole order n. One may note that rms transverse
momentum kick of the fringe is represented by the square root of a polynomial of order n + 1
in the transverse emittances €, and €, as compared to the square root of a polynomial of order
p representing the body contribution (see also [76]). Thus their ratio should be proportional
to the transverse emittance. We will show that this scaling law is indeed exact for the case
of the dipole and quadrupole. For higher order multipoles, due to the complexity of these
formulas, one can have approximative estimates considering special cases of beam shapes.

Flat beam For a flat beam, one of the transverse degrees of freedom (e.g. the vertical
y,y') vanishes. Thus, the total transverse rms momentum increment for the body is

eV, by, Lo 2n
(8o = VTR = st [ () e (290)
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where 37 represents the average of the 3" on the body of the magnet and €, is the rms beam
transverse emittance. The total transverse rms momentum increment for the fringe is

(AP )oms = V{(2pD)2) o S22 \/ (2””) it @ntd)af e (o

T\ \n+1 2(n + 2)

where 3 and a represent the beta and alpha functions, at the fringe location. The ratio of the
rms momentum transverse kicks is:

(AP )ms 1 \/ (2n + 1)8"[1 + (20 + 3)a?]

) (292)

(AP )ims — 8Leg (n+1)(n+2)8"

Considering that the beta functions are not varying rapidly, if the magnets are in non-critical
locations (which is to say most magnets), the square root can be neglected, so a crude estimate
of the impulse is given by

(Api)rms ~ €1
(Ap(i)rms Leff ’
The case in which fringe deflections are likely to be most important is when « is anomalously

large, for example in the vicinity of beam waists such as at the location of intersection points
in colliding beam lattices. In this case, the deflections can be approximated by

(293)

(Api)rms ~ o €1

~

(Apli)rms Leff ,

(The same scaling law is obtained by setting 3, >> 3, in Eqs. (288).)

Often the relative deflection is so small as to make neglect of the fringe field deflection
entirely persuasive. The simplicity of the formula is due to the fact that the fringe contri-
bution is expressed as a fraction of the dominant contribution. Note that, as stated before,
this formula applies to each end separately, and does not depend on any cancellation of the
contribution from two ends. In fact, nonlinear analysis shows that fringe-field contributions
tend to add up instead of canceling [76].

(294)

Round beam For a round beam, the two transverse emittances are equal ¢, = ¢, = €. For
simplicity, we may also consider that the optics functions of the horizontal and vertical plane
are close and thus 3, ~ 3, = # and o, ~ o, = a. One may also consider that B = Bn, ie.
the beta functions do not vary significantly in the body of the magnet. Taking into account
the previous hypotheses, the total transverse rms momentum increment for the body becomes:

eszLefF_n/Q n/2 2n — 1)” 1/2

(APY ) ems = Sl B! 3 (1/2,—n, —n;1,1/2 — n; 1)( , (295)

n!

where the function in the square root represents the generalized Hyper-geometric function
(see [88] for details). Applying the same simplifications, the rms momentum kick given by the
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fringe field is:

A N evzaﬁ”/zeiﬂﬂ "L 2(n =)\ (2 2
( pL)rms ~ 2n+3(n + 1)’ lz: n—1 I gn,l(a) ) (296)
=0

where we considered 3, ~ (3, =  and the same for the o functions. Notice now that the sum
of the coefficients g, ; = gn,1,0 + gn,1 + gn,2 depends only on a. The series involving them can
be also written as a sum of a few generalized Hyper-geometric functions. The ratio of the rms
momentum transverse kicks is:

(Apﬂc_)rms ~ €1 6n/2

~

(Apli)rms Leff 32

Cnla) (297)

where the coefficient C), is:

1 n'Zzo(Z(:zl)( )gnl @)
8(n+1) |3F(1/2,—n,—m;1,1/2—m D(2n— DI |

1/2

Cpla) = (298)

Let us consider two cases, as before: one where « is small and one where « is large, as in the
case of interaction points of large colliders. For the first case (« small), we may neglect the
terms having « as a factor in the coefficient g,; and in the second case, we can pull out «
from the square root and neglect terms in the coefficient g, ; having now the « function in the
denominator. In this way, the coefficients C, of Eq.( 298) will depend only on the order n.
The behavior of these coefficients as a function of the multipole order n, for large and small
«, is dominated by (1/(n + 1). For all practical cases (multipole orders up to 20), C,, lies
between 1/2 and 1/10. Considering now that the average (3 in the body of the magnet is not
so different from ( in the fringe, one gets for small a functions:

(Api)rms —~ €1

~

(Ap(i)rms Leff ’

(299)

as in Eq. (293), and for « large:

, (300)
as in Eq. (294).

7.3 Frequency maps and diffusion maps

The application of high-order perturbation theory has been extensively used in beam physics [77,
78] in order to give some insight regarding the systems’ non-linear dynamics. However, the
construction of some optimal set of variables (normal forms or action-angle) for the evaluation
of the phase space distortion cannot be applied in the parts of the phase space which are close
to instabilities, such as resonances or chaotic regions. In fact, an approach giving in a direct
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way a global view of the phase space structure is needed. This later can be achieved by the Fre-
quency Map Analysis (F.M.A), a method extensively used in celestial mechanics [79, 80] and
in Hamiltonian toy models [81, 82, 83] but only recently in real accelerators, as the ALS [84]
or the LHC [86]. The method relies on the high precision calculation [85] of another fixed
feature of KAM orbits, the associated frequencies of motion and can be directly applied in
short term tracking data. Moreover, the variation of the frequencies over time [82, 83, 86] can
provide an early stability indicator as good as, if not better than, the Lyapounov exponent.

The first step is to derive through the NAFF algorithm [79] or variants of this code, a
quasi-periodic approximation, truncated to order N,

N
£t = ajpetnt (301)
k=1

with fi(t),a;x € C and j = 1,...,n, of a complex function f;(t) = ¢;(t) + ip;(t), formed
by a pair of conjugate variables of a n degrees of freedom Hamiltonian system, which are
determined by usual numerical integration, for a finite time span ¢ = 7. The next step is
to retain from the quasi-periodic approximation the frequency vector v = (vq,vs,..., V)
which, up to numerical accuracy [85], parameterizes the KAM tori in the stable regions of a
non-degenerate Hamiltonian system. Then, the construction of the frequency map can take
place [81, 82, 83, 84|, by repeating the procedure for a set of initial conditions which are
transversal to the orbits of interest. As an example, we may keep all the g variables constant,
and explore the momenta p to produce the map F,:
rR* — R

F.
p|q:'JO — V.

(302)

The dynamics of the system is then analyzed by studying the regularity of this map.

The F.M.A is applied to the tracking data (7 = 500 turns), for a large number of initial
conditions (= 10*). We select an arbitrary section of the phase space, setting the initial trans-
verse momenta to zero. The particle coordinates are chosen equally spaced in the transverse
linear Courant-Snyder invariants Iy and I, at different ratios I,0/l,0. Hence, we construct
the map

R? — R?

Fro: ,
(Im[y)|pz,py:07 — (Vany)

(303)

and proceed to the dynamical analysis of the accelerator model.

To give an example, in Figures 59, we display frequency maps [82, 86], for the working
point (6.3,5.8) of the SNS accumulator ring. The maps are produced by injecting 1000 particles
with different amplitudes up to a maximum emittance of 480 7 mm mrad and five different
momentum spreads (0p/p = 0,£0.1,£0.15). Small field errors in the quadrupoles and dipoles
were included, in the 10~ —4 level. Finally, quadrupole fringe fields were simulated like “hard-
edge” kicks at the entrance and the excite of the magnets.

The two maps correspond to two different cases: on the left the chromaticity sextupoles
are switched off and the machine has its natural chromaticities (&;,&,) = (=7.7, —6.4). Thus,
there is a huge tune-spread of the order of 0.3 associated with of off-momentum particles
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motion. In addition, the quadrupole fringe-fields produce an “octupole-like” tune-shift linear
with amplitude, which corresponds to the triangular shape of the foot-prints. This tune-shift
pushes large amplitude off-momentum particles into dangerous resonances, as the structural
coupling resonances in the middle of the plot @), + @, = 12. This resonance can be excited
by linear coupling errors due to magnet tilts and misalignments [143]. Moreover this line
corresponds to an octupole resonance of the type 2Q), 4+ 2@, = 24 which can be excited by the
quadrupole fringe-fields. The detrimental effect of this resonance is reflected in the irregularity
of the map at bottom corner of the plot corresponding to particles with momentum spread of
dp/p = 0.15. The map on the right corresponds to a case where the sextupoles are tuned in
order to set the chromaticities to 0. As expected, the chromatic tune spread is eliminated.

(Q,.Q,)=(6.3,5.8) without sextupoles (Q,.Q,)=(6.3,5.8) with sextupoles
8p/p=(1.5%,1%,0,-1%,-1.5%) @ 480 = mm mrad 8p/p=(1.5%,1%,0,-1%,-1.5%) @ 480 = mm mrad
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Figure 59: Frequency maps for the working point (6.3,5.8), without (left) and with (right)
sextupoles.

The global dynamics of these two cases can be also displayed in the physical space of the
system by mapping each initial condition with a diffusion indicator: the tune can be calculated
for two equal and successive time spans which correspond to half of the total integration time
T, giving a diffusion vector:

D|t:7’ = V|t€(0,7'/2} - V|t€(7’/2,7'} 5 (304)

the amplitude of which can be used for characterizing the instability of each orbit. We can
plot the points in the (1,0, I,)-space with a different color corresponding to different diffusion
indicators in logarithmic scale: from grey for stable (]D| < 1077) to black for strongly chaotic
particles (|D| > 1072). Through this representation we are able to view the traces of the
resonances in the physical space, and set a pessimistic threshold for the minimum D.A..
Moreover, we can compute a diffusion quality factor defined as the average of the local diffusion
coefficient to the initial amplitude of each orbit, over a domain R of the phase space:
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| D|

Par =z, o

(305)

This quantity can be used for the comparison of different designs and the optimization of the
correction schemes proposed.

7.4 Transition Energy Crossing

Among existing rings where the beam has to cross transition energy (AGS, CERN PS, SPS,
KEK PS, FNAL Booster, etc.), beam loss and emittance growth are often observed due to
chromatic nonlinearity, self-field mismatch, and instabilities [30]. At CERN SPS, the injection
energy is raised to avoid transition during intense single-bunch operation. Longitudinal head-
tail instability caused by nonlinear momentum compaction further complicates injection near
transition. At AGS, transition jump [31] using pulsed quadrupoles has been used to minimize
beam loss at high intensity. The large lattice distortion introduced by the jump system prior
to the crossing severely limits machine aperture. Efforts to correct the distortion with existing
sextupoles have been partially successful (Figure 60) [32].

Newly designed rings usually avoid transition either by the choice of injection and extrac-
tion energy, or by lattice manipulation creating negative dispersion in the bends. For rings
that must cross transition, an optically matched transition jump using multiple quadrupole
families located at different values of dispersion is preferred [33].

During acceleration in a synchrotron, the longitudinal particle motion is non-adiabatic
within a characteristic time +7, near transition energy 7r,

_— TE 3273 3
“ 7\ geV] cos ¢, | yhw?

where the subscript s denotes the synchronous value. Upon crossing, the synchronous phase
(¢s) typically needs to be shifted by m — 2¢, in a time much shorter than 7..

(306)

7.4.1 Linear equations of motion

With a normalized time dr = kdt, k = qeV'| cos ¢5|/2mh, the longitudinal motion is described
by a Hamiltonian [164] H(p, J;7) = £J/31. The action-angle variables (¢, J) are related to
the rf phase ¢ and W = —AF/hws by

A¢p = Fv/2J/BL(sinp + ar cos p)

W = —+\/2JBcosyp

where the upper (or lower) sign is for below (or above) vy, a = —f3; /2, and ' denotes the
derivative with respect to 7. The amplitude function [y, is given by

—2mh3w?n,
1oV o5 0., 7

1 1
§5L52—1 ILQ+K5%:1, K =
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For a constant + near transition,

Bt . 2 2
e gx Jfé(y) + Nfé(y) ~ 1.58 — 1.15z

where y = 22%/2/3, v = |At|/T., and At is the time delay from 7. The synchrotron frequency
is Q, = kﬂL’l. The maximum excursions in ¢ and W are qs = /2v.J and W= V206.J, where
1+ a2 = Bryr. For a bunch of rms bunch area S = 2m(J), the rms phase and momentum
deviations at vy are 64 = 0.52 (S/kT.)""* and &5 = 0.71hw, (kT,S)"* /E,32.

7.4.2 Single-particle effects

Single-particle effects include mismatching to the accelerating rf bucket, coupling to transverse
motion, and various kinds of mis-timing in a time comparable to 7.
Emittance growth due to chromatic nonlinearities (Johnsen effect) is given by

T,
AS 0.76 ?l for T,y < Ty
G WY &
eg(Tcl) -1, for T, > 1T,

where the total nonlinear time 47, is given by

(a1+%) V6557

2
T, = s
nl 9 5

This effect was experimentally observed, and «; was obtained by measuring the synchrotron
frequency or minimum-loss timing as a function of the beam radial position. Reducing the
chromatic nonlinearity using sextupole families was proposed and demonstrated.

7.4.3 TUmstatter effects

Transverse space-charge force changes the tune of each individual particle, making vy de-
pendent on the azimuthal beam density. The amount of subsequent mismatch is inversely
proportional to $;72, and usually negligible if 77 is much higher than the injection energy.

7.4.4 Multi-particle mismatch

Emittance growth due to bunch mismatch under a reactive impedance Z|; at the bunch fre-

quency is proportional to the ratio of the beam-induced force to the accelerating force,
AS _ RI|Zy/n]

~ —1 307
S 3V| cos o] 63) (307)

where I is the peak current at yr. Eq. 307 is valid exactly for a parabolic distribution under
the space charge force.
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A longitudinal resistive impedance R at bunch frequency causes energy dissipation, shifting
the synchronous phase by A¢, ~ I'R/V| cos ¢| while producing a growth

AS o m
S VoV cos gl 7o

The change in ¢, at transition can cause severe beam loading stress while the rf cavity
tuning system changes the sign of the reactive beam loading compensation.

7.4.5 Instabilities

A capacitive (or inductive) longitudinal coupling impedance Z at a broad-band frequency
will cause a microwave instability during a time Ty,, ~ 1.37 (D; — 1) T; after (or before)
transition if

- 4hf ‘Zu/n‘ (308)
1™ 9V cos ¢, 65~
Eq. 308 is valid exactly for a parabolic distribution under negative-mass instability above .
A resistive longitudinal impedance may cause instability both below and above ;. Microwave
instability near vy, has been experimentally observed and simulated.

The transverse microwave instability threshold at ~; is

1.50
DL =~ %&D| Z 1

where (37 is the average [ function at the impedance location, and b is the beam pipe radius.
When the beam stays near v, for a relatively long time, longitudinal head-tail and other
slow-growing instabilities may also occur.

7.4.6 Simulations

Macro-particle method has been used to construct beam-induced forces in both the space and
frequency domain. For a given numerical accuracy, the number of macro particles needed to
simulate a reactive (or resistive) coupling is proportional to the cubic (or linear) power of the
highest frequency considered.

7.4.7 Transition jump

A vyr-jump has been demonstrated on many machines to improve crossing efficiency by ef-
fectively increasing the crossing rate. Without varying the tunes, a sudden change of ~r is
achieved by pulsing quadrupoles, often grouped in m-doublets, at locations of high dispersion.
In order to minimize optical distortion and chromatic nonlinearity enhancement, “matched,
first-order” schemes have been adopted for recently proposed accelerators incorporating two
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families of quadrupoles at regions of different dispersion. For a maximum allowable fractional
growth of bunch area G5 = AS/S, the minimum size Ay and speed || of 4 jump is

0.76 Tnl>6/5

. 1Y — 7|
A~y > 25T, - >
YT YLni 3 Gs T,

to compensate for chromatic nonlinear effect,

_ 4/3
31E,32qeV (I\Zn/n\) /

A~y >
i h1/3] cos ¢y |1/3w?2S? GV

. 2
=l 2hGs|Z)/n)|
¥ V| cos ¢s| ¢?

for self-field mismatch, and

_ 4/3
Ao A6EBRqeVay ([ 1]Z)/n)
T h1/3] cos ¢y |/3w?2S5? Vv

R 2
=l _ [ _8h1]Z)/n)
g 3V cos ¢s| ¢?

for microwave instability, where I and (;5 are values in the absence of jump, I = Nyqew,/2T.

7.4.8 Other compensation methods

Other methods attempted or proposed include (a) minimizing the impedance at yr by adding
reactive loading (b) rf system feedback (c) avoiding phase jump by continuously varying V'
and ¢, (d) rf manipulation to eliminate bunch-length oscillation (e) artificial blow-up of the
longitudinal emittance (f) reducing rf voltage to alleviate chromatic effects (g) temporarily
changing the orbit circumference using programmed V' and ¢4 (h) using a flattened rf wave
to reduce 65 and I and to provide equal acceleration for all the particles near vr.

Methods to avoid transition include (a) raising injection energy (b) reducing v along with
transverse tunes (c) creating a large or imaginary 7 by using negative bends (d) creating a
large or imaginary vy by using m-straight sections at small or negative dispersion

7.4.9 Applications

Operating storage rings under a quasi-isochronous condition (very small «y) has been pro-
posed to achieve very short bunches for free electron drivers, synchrotron light sources, next
generation et e colliders, and muon colliders. These designs require both an accurate control
of a; to provide the necessary momentum acceptance (~ a;'), and effective ways to damp
instabilities. Obtaining short bunches by extracting near 7 has also been proposed for a
proton driver of muon collider.

147 June 28, 2002



High-Intensity Circular Accelerators Special Topics

7.5 Intra-Beam Scattering

During the last decade, many theories have been developed on the subject of intra-beam
Coulomb scattering of the hadron beam. These theories assume that the particle distribution
remains Gaussian in the six dimensional phase space. The rates of growth in the rms beam
amplitude are expressed in complex integral forms.

Based on assumptions applicable to many circular accelerators, we simplify into analytical
form the growth rates of a hadron beam under Coulomb intra-beam scattering (IBS). Because
of the dispersion that correlates the horizontal closed orbit to the momentum, the scaling
behavior of the growth rates are drastically different at energies low and high compared with
the transition energy. At high energies, the rates are approximately independent of the energy.
Asymptotically, the horizontal and longitudinal beam amplitudes are linearly related by the
average dispersion. At low energies, the beam evolves such that the velocity distribution in
the rest frame becomes isotropic in all the directions.

7.5.1 Beam growth rates

The growth of the particle beam under intra-beam scattering is usually described by the
relative time derivatives of the rms horizontal betatron amplitude o,, vertical amplitude o,
and fractional momentum deviation o,, respectively. Assume that the scatterings mostly
occur at small scattering angles, and that the particle distribution remains Gaussian in six
dimensional phase space. When the particle motions in horizontal and vertical directions are
not coupled, these rates are obtained at any location of the machine

Lo, 1 L= P
op dt
1 do, Ag ) 4.2 2 2 | 72
— 0 | =5 [ sinfddédzexp(—D2)In(1+C') | a’gy+ (@ +d)gr |, (309)
i) doy, 5
| oy dt ] bgs
where
B criNZ*6,.5, G
0 32m2A%020 20,0, 3y 07 moe’
D,o - D,d —
d= PP , d=—-- D, =a,D,+ 3,D.,
GRS p

_ ﬂxd _ ﬂyo—m
a = , b= a,
Dp7 ﬂway
and

D = cos® + b*sin® sin® ¢ + (asind cos ¢ — d cos ),
o, (1 — d?)]l/2

To

C =200, [

g1 =1—3cos?0,
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g2 = cos” 0 — 2sin® f cos® ¢ + sin® fsin’ ¢ + 6d cos O sin f cos ¢/ a,

g3 = cos® 0 + sin? 0 cos® ¢ — 2sin? #sin? .

Here, the prime denotes the derivative with respect to the displacement along the circumfer-
ence, Dy, is the horizontal dispersion, «, , and (3, , are the Courant-Snyder parameters, v is the
Lorentz factor, ny is equal to 1 if the beam is azimuthally bunched, and is equal to 2 if it is not.
For bunched beams, o, is the rms bunch length and /N is the number of particles per bunch;
for un-bunched beams, N is the total number of particles and oy = L/2+/7, where L is the cir-
cumference of the machine. The quantity d < 1 is the effective ratio between the longitudinal
and horizontal total amplitude. The actual growth rates observed over a time long compared
with the revolution period, are calculated by averaging Eq. 309 over the circumference. This
averaging process is implicitly implied in almost all the following equations.

Eq. 309 can in many cases be simplified into analytical forms. Firstly, the quantity In(1 +
C*2?) in Eq. 309 has a weak dependence on the beam configuration. It can be substituted
by a constant 2L., where L. is about 20. With this simplification, the integration over z can
be performed. Secondly, we assume that the accelerator consists mostly of regular cells, so
that the variation in D,/ B;/ % is small along the circumference. Terms including D, and d in
Eq. 309 are thus negligible. Replacing sin? ¢ and cos? ¢ with their average value 1/2, Eq. 309
is further simplified by integrations over # and ¢

[ 1 doy ] (1 — )
op dt
L 4% | g P | —a22+ & (310)
T i
— oy 2

| o, dt —b°/2

where
x = (a®+0%)/2>0. (311)

As shown in Figure 61, the function

Flx) = == (i fiX)[(X) (312)

with the function

—1
Arthy /X "= x> 1;

=] <

— (313)

1
100 ={ VXY
\/ﬁ arctan T x <1

is a smooth function of x. It is positive when x < 1, zero when y = 1, and negative when
X > 1. F(x) has the asymptotic expression

T < 1:
5 X <1

X
Foo =19 Y (314)
—7 X > 1.
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Figure 61: Function F(x) with 0 < y < co.
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In terms of the normalized transverse emittance €, , = ﬁfyafw / Bz, and longitudinal bunch
area in phase space S = mmyc?3vy0s0,/cA, Eq. 310 can be rewritten

[ 1 dop ] (1 — d?)
op dt P
1 do, Z"N rgmoc”L, 9 9
— = F —a“/2+d 315
o, dt A? 8ye,e,S ) @[+ (315)
1 doy )

L o, dt —b°/2

The growth rates are shown to be linearly proportional to the number of the particle N in the
beam, and are strongly dependent (~ Z%/A?) on the charge state of the particle. Except for
the form factors x, d, a, and b that depend on the ratio of the beam amplitudes in different
dimension, the rates are inversely proportional to the six dimensional phase space area.

The growths in the longitudinal and vertical amplitudes are both caused by the variation
of the velocities in the corresponding direction. The growth in the horizontal amplitude, on
the other hand, is caused partly from the variation in the horizontal velocity, and partly from
the change in the betatron closed orbit when the momentum of the particle is varied during
the collision. It can be easily verified that the first (or second) part dominates when the beam
is below (or above) the transition energy of the machine.

The coupling between the horizontal and vertical motion averages the growth rates in the
transverse dimension. If the motion is fully coupled within time periods much shorter than
the IBS diffusion time, the average rates become

1 doy, 9

TN e L Y (516
L dowy | = A2 8yene,S X (—x +d?)/2

Opy dit X

7.5.2 Beam evolution at high energies

In a typically circular accelerator, the transition energy 7 is approximately equal to the
average value of ,/D, in the regular cells. When the beam energy is high compared with the
transition energy, v > 7y, the growth in horizontal direction results mostly from the variation
of the betatron orbit during the exchange of the particle momentum (a* < d?). The growths
in horizontal and longitudinal amplitudes are therefore proportional to each other (Eq. 310).
Consider the case that the vertical o, is very small, i.e. on the average
o 4o (317)
oy 2 v
[t may be verified that x > 1, and F(x) < 0. According to Eq. 310, both the horizontal and
longitudinal amplitudes are damped, while the vertical one grows. The beam evolves until
Eq. 317 is no longer satisfied.
When the vertical amplitude is no longer small so that y < 1, both horizontal and longitu-
dinal amplitudes grow. Consider the effective ratio between the horizontal betatron amplitude
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and longitudinal amplitude

nbncaﬁ

252
Dp UP

CHE

(318)

where n. is equal to 1 if the horizontal and vertical motions are not coupled, and is equal to
2 if they are fully coupled. Using Eq. 310, the rate of change of C'y can be derived on the
average

dc

d—tH = 4w AgL.d*Cy F(x)(1 = Cy). (319)
This rate is positive if C'g is less than 1, and is negative if C'y is larger that 1. Therefore, the
horizontal o, and longitudinal o, grow such that asymptotically the quantity C'y approaches
1, or

nyneoy ~ Dion, v > r (320)

o, and o, are related only by the average dispersion D,,.

In a typical storage ring like the Relativistic Heavy Ion Collider (RHIC), the beams are
stored at energies much higher than the transition energy. Due to coupling and injection
condition, the horizontal and vertical betatron amplitudes are about the same. The growth
rates can be explicitly written from Eq. 321 by using Eq. 314

1 do, 9

—_p 1—-d°)/d

Up dt — Z4N7T7“gm002Lc nb( )/ (321)
1 do, A? 16ype€,S d/ne

o, dit

Their dependence on the energy of the beam, which appears only in the form factor d, is
usually weak. After the initial stage of storage, the asymptotic configuration Eq. 320 will be
approximately reached.

7.5.3 Beam evolution at low energies

Beam evolution at energies much lower than the transition energy of the machine can be
studied similarly. At low energies, a? > d?, the growth in horizontal amplitude is mostly
caused by the variation in the horizontal velocity alone. Eq. 310 indicates that the growths
in horizontal and vertical amplitudes are proportional to each other.

Consider the case that the longitudinal o), is very small, i.e. on the average

D,o, 0 2
L < 7L 322
o V10 Y YT ( )

where Cp, = (707 /B70; is the betatron amplitude ratio between horizontal and vertical direc-
tions. It may be verified that y < 1, and F'(x) > 0. According to Eq. 310, both horizontal and
vertical amplitudes are damped, while the longitudinal one grows. The beam evolves until
Eq. 322 is no longer satisfied.
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When the longitudinal amplitude is no longer small so that y > 1, both horizontal and
vertical amplitudes grow. Using Eq. 310, the rate of change of C can be derived

dC'
d—tL = —4m Ay Lea’CpF(x)(1 — Cy) (323)
This rate is positive if Cp, is less than 1, and is negative if C, is larger that 1. Therefore,
the horizontal o, and vertical o, grow in such a way that asymptotically the quantity Cp,
approaches 1. Combining with Eq. 322 and the previous results, we therefore obtain the
asymptotic beam configuration at low energies
Or Oy _ Op
—r—=r—, 7< 7. (324)
Bo By v
The three quantities in Eq. 324 are proportional to the horizontal, vertical, and longitudinal
velocities in the rest frame of the particles, respectively. Eq. 324 implies that the beam
evolves such that the velocity distribution in the rest frame becomes isotropic in all the three

directions.

7.5.4 Discussions

Based on assumptions applicable to many circular accelerators, we simplified the general
integral expressions (Eq. 309) of the IBS growth rates into analytical forms (Eq. 310). The
rates are expressed in terms of the beam charge state, mass, energy, phase-space area, and
the machine transition energy, both for the un-coupled (Eq. 315) and fully coupled (Eq. 316)
cases. They have been shown to be linearly proportional to the density of the particle in the
six dimensional phase-space. Because of the dispersion that correlates the horizontal closed
orbit to the momentum, the effect of intra-beam scattering are different at different energy
regime. At energies much higher than the transition energy, the growth rates have been shown
to be approximately independent of the energy except for the form factor d (Eq. 321).

Quantitative comparisons have been performed on the average growth rates between the
simple estimate (Eq. 315) and the detailed evaluation (Eq. 309) including lattice variation
using the actual RHIC lattice. For both the injection (low energy) and storage (high energy)
cases, the relative deviation between them is about 20%.

The evolution of the beam in different dimensions has been investigated at energies both
much higher and much lower then the transition energy. At high energies, the asymptotic
horizontal and longitudinal beam amplitudes are shown to be linearly related by the average
dispersion (Eq. 320). At low energies, on the other hand, the beam evolves such that the ve-
locity distribution in the rest frame becomes isotropic in horizontal, vertical, and longitudinal
directions (Eq. 324). At intermediate energies, the evolution has to be evaluated directly from
Eq. 310.

During the entire analysis it has been assumed that the beam distribution remains Gaus-
sian in the phase space. This assumption is valid only when the beam amplitudes are small
compared with the aperture limitation. In the case that beam loss occurs due to aperture
limitation, different approaches have to be adopted.

7.6 Electron-Cloud Effects
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8 Appendices

8.1 List of Symbols

(needs re-work)

Ps

I 0 R mE =

E, AE

)

p, Ap

/BS

UZH7 Urad

n

Agyy

Bg

Vs

RS

Qp, 0, G2, O3
Mo, My M2, M3

rf harmonic number

angular revolution frequency

synchronous total energy

electric charge number

unit electric charge

rf peak voltage

rf phase and rf synchronous phase

AE/hw,

energy and energy deviation

Ap/p relative momentum deviation
momentum and momentum deviation
synchronous velocity in units of ¢

changes in W due to impedance and radiation
frequency-slip factor

shift in rf phase

strength of magnetic guide field

synchronous energy in units of unit atomic mass
synchronous radius of the closed orbit
momentum-compaction factors

series expansion of 7
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transition energy

Hamiltonian, and in small amplitude

rf phase deviation

synchrotron-oscillation frequency

time

bucket area

bucket-area factor

action and angle variables

reduced time

longitudinal amplitude function, and the normalized
reduced Hamiltonian, and the transformed
acceleration rate

characteristic non-adiabatic time

tl/T

number of particles of the bunch

particle distribution function

particle equilibrium distribution
distribution of action contours

density perturbation

Hamiltonian perturbation, and the transformed
phase spread and W spread

area enclosed by boundary contour
longitudinal coupling impedance

beam current and its Fourier transform
particle density in rf phase

the Bessel function of sth order
vacuum-chamber aperture and beam radius
azimuthal component of electric field
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L inductance

9o geometric factor

€0 electric permittivity
c speed of light

Zy (goc)™' = 377 (ohms)

Qpg, Cpw, Oww
Ny

contour parameters
number of sampling particles

N, number of bins per 27 rf phase

ly; Ty, lyo bin length; lengths of fine and coarse bins
Aoy, bin length in rf phase

s relative distance from the bin center
Sgn(Z7) 1 for capacitive and —1 for inductive Z

Usc; Uw; Ubb; UR
R

change in W due to various kinds of impedances
wall resistance

We cutoff frequency

A longitudinal bunch area

T chromatic non-linear time

€3, €4 third and fourth order non-linearity factor
€7, €R reactive and resistive coupling factor

¥ modification due to coupling

5\, peak density

5, ¢ relative momentum and energy spreads

I Nogew; /27, average current

I peak current

Trw microwave instability growth time

D dimensionless bunch configuration quantity
B, magnetic-field ramping rate

YF final energy for computer tracking
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