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Linear imperfections
and correction
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Outline
 Steering error and closed orbit distortion

 Gradient error and beta beating correction

 Linear coupling and correction

 Chromaticity
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Coordinate system
 Cartesian coordinates not useful to describe motion in

an accelerator

 Instead a system following an ideal path along the
accelerator is used (Frenet reference system)

 The ideal path is defined by

 The curvature vector is
  From Lorentz equation

Ideal path

Particle trajectory

ρ

x

y

s

x
y

φ
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Beam guidance
 Consider uniform magnetic field B in the direction perpendicular to particle

motion. From the ideal trajectory and after considering that the transverse
velocities vx<< vs,vy<<vs, the radius of curvature is

 The cyclotron or Larmor frequency

 We define the magnetic rigidity

 In more practical units

 For ions with charge multiplicity Z and atomic number A, the energy per
nucleon is



Li
ne

ar
 im

pe
rfe

ct
io

ns
 a

nd
 c

or
re

ct
io

n,
 J

U
AS

, J
an

ua
ry

 2
00

8

6

Dipoles
 Consider an accelerator ring

for particles with energy E
with N dipoles of length L

 Bending angle

 Bending radius

 Integrated dipole strength

SNS ring dipole

 Comments:
 By choosing a dipole field, the dipole

length is imposed and vice versa
 The higher the field, shorter or smaller

number of dipoles can be used
 Ring circumference (cost) is

influenced by the field choice

B

θ ρ

L
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Equations of motion – Linear fields
 Consider s-dependent fields from dipoles and normal quadrupoles

 The total momentum can be written

 With magnetic rigidity              and normalized gradient 

the equations of motion are

 Inhomogeneous equations with s-dependent coefficients

 The term 1/ρ2 corresponds to the dipole week focusing

 The term ΔP/(Pρ) represents off-momentum particles
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Hill’s equations
 Solutions are combination of the ones from the 

homogeneous and inhomogeneous equations

 Consider particles with the design momentum. 
The equations of motion become

with

  Hill’s equations of linear transverse particle motion

 Linear equations with s-dependent coefficients (harmonic
oscillator with time dependent frequency)

 In a ring (or in transport line with symmetries), coefficients  are
periodic

 Not straightforward to derive analytical solutions for whole
accelerator

George Hill
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Betatron motion
 The on-momentum linear betatron motion of a particle is

described by

with  the twiss functions

the betatron phase

 By differentiation, we have that the angle is

    and the beta function is defined by the envelope equation
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Effect of dipole on off-momentum particles
 Up to now all particles had the same momentum P0
 What happens for off-momentum particles, i.e. particles with

momentum P0+ΔP?
 Consider a dipole with field B and 

bending radius ρ
 Recall that the magnetic rigidity  is 

and for off-momentum particles

 Considering the effective length of the dipole  unchanged

 Off-momentum particles get different deflection (different orbit)

θ

P0+ΔP

P0

ρ
ρ+δρ
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 Consider the equations of motion for off-momentum particles

 The solution is a sum of the homogeneous equation (on-
momentum) and the inhomogeneous (off-momentum)

 In that way, the equations of motion are split in two parts

 The dispersion function can be defined as
 The dispersion equation is

Dispersion equation
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Beam stability in storage rings
 Beam orbit stability very critical

 Injection and extraction efficiency of synchrotrons
 Stability of collision point in colliders
 Stability of the synchrotron light spot in the beam lines of light sources

 Consequences of orbit distortion
 Miss-steering of beams, modification of the dispersion function, resonance

excitation, aperture limitations, lifetime reduction, coupling of beam
motions, modulation of lattice functions, poor injection efficiency

 Long term Causes (Years - months)
 Ground settling, season changes, diffusion,

 Medium - Days/Hours,
 Sun and moon, day-night variations (thermal), rivers, rain, wind, refills and

start-up, sensor motion, drift of electronics, local machinery, filling patterns

 Short  (Minutes/Seconds)
 Ground vibrations, power supplies, injectors, experimental magnets, air

conditioning, refrigerators/compressors, water cooling
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Closed orbit
 Design orbit defined by main dipole field
 On-momentum particles oscillate around design orbit
 Off-momentum particles are not oscillating around design orbit, but around

chromatic closed orbit
 Distance from the design orbit depends linearly with momentum spread and

dispersion

Design orbit
Design orbit

On-momentum
particle trajectory

Off-momentum
particle trajectory

Chromatic closes orbit
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Closed orbit distortion
 Causes

 Dipole field errors
 Dipole misalignments
 Quadrupole misalignments

 Consider the displacement of a particle δx from the ideal orbit .
The vertical field is

 Remark: Dispersion creates a closed orbit
distortion for off-momentum particles

 Effect of orbit errors in any multi-pole magnet

 Feed-down 2(n+1)-pole    2n-pole     2(n-1)-pole dipole

quadrupole   dipole
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Effect of single dipole kick
• Introduce Floquet variables

• The Hill’s equations are written
• The solutions are the ones of an harmonic oscillator
• Consider a single dipole kick  at φ=π

• Then

     and
and in the old coordinates

Maximum distortion amplitude
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Closed orbit distortion
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Example: Orbit distortion for the SNS ring

 In the SNS accumulator ring, the beta function is 6m in the dipoles and 30m in
the quadrupoles.

 Consider dipole error of δy’=1mrad
 The tune is 6.2
 The maximum orbit distortion in the dipoles is
 For quadrupole displacement with 0.5mrad error the distortion is
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Example: Orbit distortion in ESRF storage ring

 In the ESRF storage ring,
the beta function is  1.5m in
the dipoles and 30m in the
quadrupoles.

 Consider dipole error of
δy’=1mrad

 The horizontal tune is 36.44
 Maximum orbit distortion in

dipoles

 For quadrupole
displacement with 1mm, the
distortion is

 Magnet alignment is critical



Li
ne

ar
 im

pe
rfe

ct
io

ns
 a

nd
 c

or
re

ct
io

n,
 J

U
AS

, J
an

ua
ry

 2
00

8

19

Many orbit errors’ effect
 Consider random distribution of errors in N magnets
 The expectation value is given by

 Example:
 In the SNS ring, there are 32 dipoles and 54 quadrupoles
 The expectation value of the orbit distortion in the dipoles

 And in the quadrupoles
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Transport of orbit distortion due to dipole kick
• Consider a transport matrix between positions 1 and 2

• The transport of transverse coordinates is written as

• Consider a single dipole kick at position 1
• Then, the first equation may be rewritten

• Replacing the coefficient from the general betatron matrix
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Correcting the orbit distortion
 Place horizontal and vertical dipole correctors close to the

corresponding quads
 Simulate (random distribution of errors) or measure orbit in Beam

position monitors (downstream of the correctors)
 Minimize orbit distortion with several methods

 Globally
 Harmonic , which minimizes components of the orbit frequency

response after a Fourier analysis
 Most efficient corrector (MICADO), finding the most efficient corrector

for minimizing the rms orbit
 Least square fitting

 Locally
 Sliding Bumps
 Singular Value Decomposition (SVD)
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Orbit bumps

 2-bump: Only good for phase
advance equal π between correctors

 Sensitive to lattice and BPM errors
 Large number of correctors

 3-bump: works for any lattice
 Need large number of

correctors
 No control of angles
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Singular Value Decomposition example

M. Boege, CAS 2003
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Orbit feedback
 Closed orbit stabilization performed using slow and fast orbit
feedback system.
 Slow operates every a few seconds (~30s for ESRF storage ring) and
uses complete set of BPMs (~200 at ESRF) for both planes
 Efficient in correcting distortion due to current decay in magnets or
other slow processes
 Fast orbit correction system operates in a wide frequency range
(.1Hz to 150Hz for the ESRF) correcting distortions induced by
quadrupole and girder vibrations.
 Local feedback systems used to damp oscillations in areas where
beam stabilization is critical (interaction points, insertion devices)
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 Key issue for the performance -> super-periodicity
preservation -> only structural resonances excited

 Broken super-periodicity -> excitations of all resonances
 Causes

 Errors in quadrupole strengths (random and systematic)
 Injection elements
 Higher-order multi-pole magnets and errors

 Observables
 Tune-shift
 Beta-beating
 Excitation of integer and half integer resonances

Gradient error and optics distortion
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 Consider the transfer matrix for one turn

 Consider a gradient error in a quad. In thin element approximation
the quad matrix with and without error are

 The new 1-turn matrix is
which yields

Gradient error
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 Consider a new matrix after 1 turn with a new tune

 The traces of the two matrices describing the 1-turn should be
equal
which gives

 Developing the left hand side

and finally
 For a quadrupole of finite length, we have

Gradient error and tune-shift
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 Consider the unperturbed transfer matrix for one turn

 Introduce a gradient perturbation between the two matrices

 Recall that and write the perturbed term as

 On the other hand

and
 Equating the two terms and integrating through the quad

Gradient error and beta distortion
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 Consider 18 focusing arc quads in the SNS ring with 1% gradient
error. In this location β=12m. The length of the quads is 0.5m

 The tune-shift is
 For a random distribution of errors the beta beating is

 Optics functions beating > 20% by putting random errors (1% of
the gradient) in high dispersion quads of the SNS ring

 Justifies the choice of TRIM windings strength

Example: Gradient error in the SNS storage ring
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 Consider 128
focusing arc quads
in the SNS ring
with 0.1% gradient
error. In this
location
<β>=30m. The
length of the quads
is around 1m

 The tune-shift is

Example: Gradient error in the ESRF storage ring
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 For a random distribution of errors the beta variation

(beating) is

 Optics functions beating >10% by putting random errors
(0.1% of the gradient) in high dispersion quads of the
ESRF storage ring

 Justifies the choice of quadrupole corrector strength

Random gradient error distribution
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 Windings on the core of the quadrupoles or individual
correction magnets (TRIM)

 Simulation by introducing random distribution of
quadrupole errors

 Compute tune-shift and optics function beta distortion
 Move working point close to integer and half integer

resonance
 Minimize beta wave or quadrupole resonance width with

TRIM windings
 To correct certain resonance harmonics N, strings should

be powered accordingly
 Individual powering of TRIM windings can provide

flexibility and beam based alignment of BPM

Gradient error correction
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 Betatron motion is coupled in the presence of skew quadrupoles
 The field is and Hill’s equations are coupled
 Motion still linear with two new eigen-mode tunes, which are

always split. In the case of a thin quad:

 Coupling coefficients

 As motion is coupled, vertical dispersion and optics function
distortion appears

 Causes:
 Random rolls in quadrupoles
 Skew quadrupole errors
 Off-sets in sextupoles

Linear coupling
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 Introduce skew quadrupole correctors
 Simulation by introducing random distribution of

quadrupole errors
 Correct globally/locally coupling coefficient (or

resonance driving term)
 Correct optics distortion (especially vertical

dispersion)
 Move working point close to coupling resonances

and repeat
 Correction especially critical for flat beams

Linear coupling correction
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-0 .0200

-0.0150

-0.0100

-0.0050

0.0000

0.0050

0.0100

0.0150

0.0200

Seed #

T
u

n
e
 

sp
li

t 
d

if
fe

r
e
n

c
e

Before Correct ion -0.009 -0.014 0.016 -0.013-0.004 0.007 0.015 0.008 0.008 0.007 0.014 0.006 0.000 0.005 -0.006 0.006 0.015 -0.015 0.009 0.010

After correct ion 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000-0.000 0.000 -0.000 0.000 0.000 0.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example: Coupling correction for the SNS ring
 Local decoupling by super period using 16 skew quadrupole

correctors
 Results of Qx=6.23 Qy=6.20 after a 2 mrad quad roll
 Additional 8 correctors used to compensate vertical dispersion
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Example: Coupling correction for the ESRF ring
 Local decoupling using 16 skew quadrupole correctors and coupled

response matrix reconstruction
 Achieved correction of below 0.25% reaching vertical emittance of

below 10pm

R. Nagaoka, EPAC 2000
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 Linear equations of motion depend on the energy
(term proportional to dispersion)

 Chromaticity is defined as:
 Recall that the gradient is
 This leads to dependence of tunes and optics

function on energy
 For a linear lattice the tune shift is:

 So the natural chromaticity is:

Chromaticity
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 In the SNS ring, the natural chromaticity is –7.
 Consider that momentum spread
 The tune-shift for off-momentum particles is

 In order to correct chromaticity introduce particles
which can focus off-momentum particle

Example: Chromaticity in the SNS ring

Sextupoles
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 The sextupole field component in the x-plane is:
 In an area with non-zero dispersion
 Than the field is

 Sextupoles introduce an equivalent focusing correction

 The sextupole induced chromaticity is

 The total chromaticity is the sum of the natural and
sextupole induced chromaticity

Chromaticity from sextupoles

quadrupole           dipole
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 Introduce sextupoles in high-dispersion areas
 Tune them to achieve desired chromaticity
 Two families are able to control horizontal and vertical

chromaticity
 Sextupoles introduce non-linear fields (chaotic motion)
 Sextupoles introduce tune-shift with amplitude
 Example:

 The SNS ring has natural chromaticity of –7
 Placing two sextupoles of length 0.3m in locations where
β=12m, and the dispersion D=4m

 For getting 0 chromaticity, their strength should be
or a gradient of 17.3 T/m2

Chromaticity correction



Li
ne

ar
 im

pe
rfe

ct
io

ns
 a

nd
 c

or
re

ct
io

n,
 J

U
AS

, J
an

ua
ry

 2
00

8

41

 Two families of sextupoles not enough for correcting off-momentum optics
functions’ distortion and second order chromaticity

 Solutions:
 Place sextupoles accordingly to eliminate second order effects (difficult)
 Use more families (4 in the case of of the SNS ring)

 Large optics function distortion for momentum spreads of ±0.7%,when using
only two families of sextupoles

 Absolute correction of optics beating with four families

Two vs. four families for chromaticity correction
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 Introduce sextupoles in high-dispersion areas (not easy to find)
 Tune them to achieve desired chromaticity
 Two families are able to control horizontal and vertical

chromaticity
 Sextupoles introduce non-linear fields (chaotic motion)
 Sextupoles introduce tune-shift with amplitude
 Example:

 The ESRF ring has natural chromaticity of -130
 Placing 32 sextupoles of length 0.4m in locations where β=30m, and the

dispersion D=0.3m
 For getting 0 chromaticity, their strength should be

or a gradient of 280 T/m2

Chromaticity correction
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Eddy current sextupole component

Sextupole component due to Eddy currents in an elliptic vacuum chamber
of a pulsing dipole

with

Taking into account

with

we get
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ESRF booster example

Booster Chromaticity without correction
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Example: ESRF booster chromaticity
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Problems
5.1) A 1GeV proton ring with a circumference of 248m has 18 1m-long focusing quads with

gradient of 5T/m, with an horizontal and vertical beta function of 12m and 2m
respectively. The average beta function around the ring is 8m. With a horizontal tune of
6.23 and a vertical of 6.2, compute the average orbit distortions on the quads given by
horizontal and by vertical misalignments of 1mm.What happens to the orbit distortions if
the horizontal tune drops to 6.1 and 6.01?

5.2) Three correctors are placed at locations with phase advance of π/4 between them and beta
functions of 12, 2 and 12m. How are the corrector kicks related to each other in order to
achieve a closed 3-bump.

5.3) Consider a 400GeV proton synchrotron with 108 3.22m-long focusing and defocusing
quads of 19.4 T/m, with a horizontal and vertical beta of 108m and 18m in the focusing
quads which is inversed for the defocusing ones. Find the tune change for systematic
gradient errors of 1% in the focusing and 0.5% in the defocusing quads. What is the
chromaticity of the machine?

5.4) Derive an expression for the resulting magnetic field when a normal sextupole with field B
= S/2 x2 is displaced by δx from its center position. At what type of fields correspond the
resulting components? Do the same for an octupole with field B = O/3 x3. What is the
leading order multi-pole field error when displacing a general 2n-pole magnet?


