

Lattices for electron storage rings Yannis PAPAPHILIPPOU CERN

United States Particle Accelerator School, University of California - Santa-Cruz, Santa Rosa, CA 14th – 18th January 2008

- Lattice design phases and strategyBuilding blocks, magnetic multi-pole expansion
- Reminder on matrices and betatron functions
- Low emittance lattice conditions
- Examples of low emittance lattices

Lattice design phases

Initial preparation

- Performance
- Boundary conditions and constraints
- Building blocks (magnets)
- Linear lattice design
 - Build modules, and match them together
 - □Achieve optics conditions for maximizing performance
 - Global quantities choice working point and chromaticity
- Non-linear lattice design
 - Chromaticity correction (sextupoles)
 - Dynamic aperture
- Real world
 - Include imperfections and foresee corrections

Lattice design inter-phase

Magnet Design: Technological limits, coil space, field quality Vacuum: Impedance, pressure, physical apertures, space Radiofrequency: Energy acceptance, bunch length, space Diagnostics: Beam position monitors, resolution, space Alignment: Orbit distortion and correction Mechanical engineering: Girders, vibrations Design engineering: Assembly, feasibility

Other devices

Device	Parameter	Purpose	
RF cavities	RF phase and Voltage	Acceleration, phase stability	
Septum	Position and width	injection	
Kicker	Integrated dipole field		
Orbit corrector	integrated dipole neid	Orbit correction	
Quadrupole corrector	Integrated quad field	Restoring periodicity	
Skew quadrupoles	Integrated skew quad field	Coupling correction	
Undulators, wigglers	Number of periods, wavelength, field and gap	Synchrotron radiation	
Vacuum pumps	Passive	Keep high vacuum	
Beam position monitors, other instrumentation	Paccino	Position, beam parameters measurement	
Absorbers	1 assive	Synchrotron radiation absorption	

A. Streun, CAS 2003

n=1

and potentials are

Lattices, USPAS, January 2008

8

Magnetic multipole expansion II

From the complex potential we can derive the fields

$$B_y + iB_x = -\frac{\partial}{\partial x}(A_s(x,y) + iV(x,y)) = -\sum_{n=1}^{\infty} n(\lambda_n + i\mu_n)(x+iy)^{n-1}$$

Setting
$$b_n = -n\lambda_n$$
, $a_n = n\mu_n$ we have
 $B_y + iB_x = \sum_{n=1}^{\infty} (b_n - ia_n)(x + iy)^{n-1}$

Define normalized units $b'_n = \frac{b_n}{10^{-4}B_0} r_0^{n-1}, \ a_n = \frac{a_n}{10^{-4}B_0} r_0^{n-1}$

on a reference radius, 10⁻⁴ of the main field to get

$$B_{y} + iB_{x} = 10^{-4}B_{0}\sum_{n=1}^{\infty} (b'_{n} - ia'_{n})(\frac{x + iy}{r_{0}})^{n-1}$$
Note: n'=n-1 is the US convention

Lattices, USPAS, January 2008

■ *2n*-pole:

- Normal: gap appears at the horizontal plane
- Skew: rotate around beam axis by $\pi/2n$ angle
- Symmetry: rotating around beam axis by π/n angle, the field is reversed (polarity flipped)

	coil width poletip field		aperture	
	$\frac{L_{\rm tot} - L_{\rm eff}}{2}$ [mm]	$B_{ m pt}$ [T]	R [mm]	
Bending magnets:	65 150	1.5	2035 (= <i>g</i> /2)	
Quadrupoles:	40 70	0.75	3043	
Sextupoles:	40 80	0.6	3050	

A. Streun, CAS 2003

- Coil width should be taken into account for space considerations
- Apertures as large as necessary, as small as possible depending on acceptance imposed by lattice (a few centimeters for all main magnets)
- Current is scaled as the nth power (multi-pole order) of the radius
- Pole-tip field below 1.8T (normal conducting magnets)

Generalized transfer matrix

 $\begin{pmatrix} c_x & \frac{1}{\sqrt{K}}s_x & 0 & 0 & \frac{h}{K}(1-c_x) \\ -\sqrt{K}s_x & c_x & 0 & 0 & \frac{h}{\sqrt{K}}s_x \\ 0 & 0 & c_y & \frac{1}{\sqrt{k}}s_y & 0 \\ 0 & 0 & -\sqrt{k}s_y & c_y & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

 $c_x = \cos(\sqrt{KL}) , \ s_x = \sin(\sqrt{KL}) , \ c_y = \cos(\sqrt{kL}) , \ s_y = \sin(\sqrt{kL})$ With $\sqrt{K} = \sqrt{\frac{1}{\rho^2} - k}$ Dipoles: k = 0 Quadrupoles: $\frac{1}{\rho^2} = 0$ Drifts: $\frac{1}{\rho^2} = 0 , \ k = 0$

Lattices, USPAS, January 2008

Betatron motion reminder

The linear betatron motion of a particle is described by

$$u(s) = \sqrt{\epsilon\beta(s)}\cos(\psi(s) + \psi_0) + D(s)\frac{\Delta P}{P} \quad \text{and}$$

$$u'(s) = \sqrt{\frac{\epsilon}{\beta(s)}}(\sin(\psi(s) + \psi_0) + \alpha(s)\cos(\psi(s) + \psi_0)) + D'(s)\frac{\Delta P}{P}$$
with α , β , γ the twiss functions $\alpha(s) = -\frac{\beta(s)'}{2}$, $\gamma = \frac{1 + \alpha(s)^2}{\beta(s)}$
 ψ the betatron phase $\psi(s) = \int \frac{ds}{\beta(s)}$

The beta function defines the envelope (machine aperture) $E(s) = \sqrt{\epsilon\beta(s)}$

Twiss parameters evolve as

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s_2} = \begin{pmatrix} m_{11}^2 & -2m_{11}m_{12} & m_{12}^2 \\ -m_{11}m_{21} & m_{11}m_{22} + m_{12}m_{21} & -m_{22}m_{12} \\ m_{21}^2 & 2m_{22}m_{21} & m_{22}^2 \end{pmatrix} \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s_1}$$

Generalized transfer matrix

$$\begin{pmatrix} u(s) \\ u'(s) \end{pmatrix} = \mathcal{M}_{0 \to s} \begin{pmatrix} u_0 \\ u'_0 \end{pmatrix}$$

$$\mathcal{M}_{0\to s} = \begin{pmatrix} \sqrt{\frac{\beta(s)}{\beta_0}} (\cos \Delta \psi + \alpha_0 \sin \Delta \psi) & \sqrt{\beta(s)\beta_0} \sin \Delta \psi \\ \frac{(a_0 - a(s)) \cos \Delta \psi - (1 + \alpha_0 \alpha(s)) \sin \Delta \psi}{\sqrt{\beta(s)\beta_0}} & \sqrt{\frac{\beta_0}{\beta(s)}} (\cos \Delta \psi - \alpha_0 \sin \Delta \psi) \end{pmatrix}$$

Lattice section transfer matrix

Periodic cell

$$\mathcal{M}_C = \begin{pmatrix} \cos\mu + \alpha \sin\mu & \beta \sin\mu \\ -\gamma \sin\mu & \cos\mu - \alpha \sin\mu \end{pmatrix}$$

Mirror symmetric cell

$$\mathcal{M}_C = \begin{pmatrix} \cos \mu & \beta \sin \mu \\ -\frac{1}{\beta} \sin \mu & \cos \mu \end{pmatrix}$$

CERN

 $C_q = \frac{55}{32\sqrt{3}} \frac{h}{m_0 c} = 3.83 \times 10^{-13} \text{ m}$

with the dispersion emittance defined as

 $\mathcal{H}(s) = \beta(s)\eta(s)^{\prime 2} + 2\alpha(s)\eta(s)\eta^{\prime}(s) + \gamma(s)\eta(s)^{2}$

For isomagnetic ring with separated function magnets the equilibrium emittance is written

$$\epsilon_x = 1470 \frac{E^2}{\rho} \frac{1}{l_{\text{bend}}} \int_0^{l_{\text{bend}}} \mathcal{H}_x(s) ds$$

Smaller bending angle and lower energy reduce emittance

Twiss functions through a dipole

17

Consider the transport matrix of a bending magnet (ignoring edge focusing)

$$\mathcal{M}_{\text{sector}} = \begin{pmatrix} \cos\theta & \rho\sin\theta & \rho(1-\cos\theta) \\ -\frac{1}{\rho}\sin\theta & \cos\theta & \sin\theta \\ 0 & 0 & 1 \end{pmatrix}$$

Consider at its entrance the initial optics functions β0, α0, γ0, η0, η0 '
 The evolution of the twiss functions, dispersion and dispersion derivative are given by

$$\begin{pmatrix} \beta(s)\\ \alpha(s)\\ \gamma(s) \end{pmatrix} = \begin{pmatrix} \cos\left[\frac{s}{\rho}\right]^2 & -\rho \sin\left[\frac{2s}{\rho}\right] & \rho^2 \sin\left[\frac{s}{\rho}\right]^2\\ \frac{\sin\left[\frac{2s}{\rho}\right]}{2\rho} & \cos\left[\frac{2s}{\rho}\right] & -\frac{1}{2} \rho \sin\left[\frac{2s}{\rho}\right]\\ \frac{\sin\left[\frac{s}{\rho}\right]^2}{\rho^2} & \frac{\sin\left[\frac{2s}{\rho}\right]}{\rho} & \cos\left[\frac{s}{\rho}\right]^2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \beta(0)\\ \alpha(0)\\ \gamma(0) \end{pmatrix}$$

$$\eta(s) = \eta_0 \cos\left(\frac{s}{\rho}\right) + \eta'_0 \rho \sin\left(\frac{s}{\rho}\right) + \rho(1 - \cos\left(\frac{s}{\rho}\right))$$

$$\eta'(s) = -\frac{\eta_0}{\rho} \sin\left(\frac{s}{\rho}\right) + \eta'_0 \cos\left(\frac{s}{\rho}\right) + \sin\left(\frac{s}{\rho}\right)$$

Average dispersion emittance

The dispersion emittance through he dipole is written as $\mathcal{H}(s) = \frac{1}{2} \eta \left(-4\rho + 4\rho \cos\left[\frac{s}{\rho}\right]\right) + \frac{1}{2} \left(3\rho^{2} - 4\rho^{2} \cos\left[\frac{s}{\rho}\right] + \rho^{2} \cos\left[\frac{2s}{\rho}\right]\right) + \frac{1}{2} \left(1 - \cos\left[\frac{2s}{\rho}\right]\right) + 2\sin\left[\frac{s}{\rho}\right] \eta \left(-4\rho \sin\left[\frac{s}{\rho}\right]\right) + 2\sin\left[\frac{s}{\rho}\right] \eta \left(-4\rho \sin\left[\frac{s}{\rho}\right]\right) + 2\sin\left[\frac{s}{\rho}\right] \left(-4\rho \sin\left[\frac{s}{\rho}\right]\right) + 2\sin\left[\frac{s}{\rho}\right] \sin\left[\frac{s}{\rho}\right] + \frac{1}{2} \left(-4\rho + 4\rho \cos\left[\frac{s}{\rho}\right]\right) \eta \left(2\sin\left[\frac{s}{\rho}\right] + 2\eta \right)$

and its average along the dipole of length
$$l$$

 $\langle \mathcal{H}(s) \rangle =$
 $\gamma 0 \left(\eta 0^2 - \frac{2 \eta 0 \rho \left(1 - \rho \sin\left[\frac{1}{\rho}\right]\right)}{1} + \frac{\rho^2 \left(6 1 - 8 \rho \sin\left[\frac{1}{\rho}\right] + \rho \sin\left[\frac{21}{\rho}\right]\right)}{41} \right) +$
 $\beta 0 \left(\frac{1}{2} - \frac{\rho \sin\left[\frac{21}{\rho}\right]}{41} - \frac{2 \rho \left(-1 + \cos\left[\frac{1}{\rho}\right]\right) \eta 0'}{1} + (\eta 0')^2 \right) +$
 $\alpha 0 \left(-\frac{4 \rho^2 \sin\left[\frac{1}{2\rho}\right]^4}{1} - \frac{2 \rho \left(1 - \rho \sin\left[\frac{1}{\rho}\right]\right) \eta 0'}{1} + \frac{2 \eta 0 \left(\rho - \rho \cos\left[\frac{1}{\rho}\right] + 1 \eta 0'\right)}{1} \right)$

Optics functions for minimum emittance

Take the derivative of the dispersion emittance with respect to the initial optics functions and equate it to zero to find the minimum conditions

Non-zero dispersion (general case)

$$\beta_{0} = \frac{\rho^{3} \left(2 \left(-1 + \theta^{2} + \cos\left[2 \theta\right]\right) + \theta \sin\left[2 \theta\right]\right)}{\sqrt{2} \sqrt{\theta} \rho^{4} \left(-9 \theta + 2 \theta^{3} + 8 \theta \cos\left[\theta\right] + \theta \cos\left[2 \theta\right] + 8 \sin\left[\theta\right] - 4 \sin\left[2 \theta\right]\right)}}$$

$$\alpha_{0} = \frac{\rho^{2} \left(-\theta + \theta \cos\left[2 \theta\right] + 4 \sin\left[\theta\right] - 2 \sin\left[2 \theta\right]\right)}{\sqrt{2} \sqrt{\theta} \rho^{4} \left(-9 \theta + 2 \theta^{3} + 8 \theta \cos\left[\theta\right] + \theta \cos\left[2 \theta\right] + 8 \sin\left[\theta\right] - 4 \sin\left[2 \theta\right]\right)}}$$

$$\eta_{0} = \rho - \frac{\rho \sin\left[\theta\right]}{\theta} \text{ and } \eta_{0}' = \frac{-1 + \cos\left[\theta\right]}{\theta}$$

$$\mathbb{Z}\text{ero dispersion (and its derivative)}$$

$$\beta_{0} = \frac{\rho^{2} \left(6 \theta - 8 \sin\left[\theta\right] + \sin\left[2 \theta\right]\right)}{\sqrt{2} \sqrt{-\rho^{2}} \left(9 - 6 \theta^{2} - 16 \cos\left[\theta\right] + 7 \cos\left[2 \theta\right] + 8 \theta \sin\left[\theta\right] + 2 \theta \sin\left[2 \theta\right]\right)}}$$

$$\alpha_{0} = \frac{4 \rho \sin\left[\frac{\theta}{2}\right]^{4}}{\sqrt{-\frac{9 \rho^{2}}{2} + 3 \theta^{2} \rho^{2} - \frac{1}{2} \rho \left(-16 \rho \cos\left[\theta\right] + 7 \rho \cos\left[2 \theta\right] + 2 \theta \rho \left(4 \sin\left[\theta\right] + \sin\left[2 \theta\right]\right)\right)}}$$

Minimum emittance conditions

In the general case, the equilibrium emittance takes the form

<u>CÉRN</u>

$$\epsilon_{x} = \frac{1}{J_{x} \theta^{2}} \left(735 \sqrt{2} \operatorname{En}^{2} \sqrt{\theta} \left(-9 \theta + 2 \theta^{3} + 8 \theta \cos \left[\theta\right] + \theta \cos \left[2 \theta\right] + 8 \sin \left[\theta\right] - 4 \sin \left[2 \theta\right] \right)} \right)$$

and expanding on θ we have $\epsilon_{x} = \frac{49 \sqrt{\frac{5}{3}} \operatorname{En}^{2} \theta^{3}}{2 J_{x}} - \frac{7 \left(\sqrt{\frac{3}{5}} \operatorname{En}^{2}\right) \theta^{5}}{4 J_{x}} + 0 \left[\theta\right]^{6}}{4 J_{x}} + 0 \left[\theta\right]^{6}$
In the 0-dispersion case,
 $\epsilon_{x} = \frac{735 \sqrt{2} \operatorname{En}^{2} \sqrt{-9} + 6 \theta^{2} + 16 \cos \left[\theta\right] - 7 \cos \left[2 \theta\right] - 4 \theta \left(2 + \cos \left[\theta\right]\right) \sin \left[\theta\right]}{2 J_{x}} + 0 \left[\theta\right]^{6}}$
 $\epsilon_{x} = \frac{49 \sqrt{15} \operatorname{En}^{2} \theta^{3}}{2 J_{x}} - \frac{77 \operatorname{En}^{2} \theta^{5}}{4 \left(\sqrt{15} J_{x}\right)} + 0 \left[\theta\right]^{6}}{\theta \left(\sqrt{15} J_{x}\right)} + 0 \left[\theta\right]^{6}}$
The second order term is negligible (less the 1% for $\theta < 20$ deg.)
Note that in both cases the emittance depends on the 3rd power of the bending angle
The emittance for non-zero dispersion is 3 times smaller

Deviation from the minimum emittance

Effective emittance

Lattices, USP

the **effective emittance** $\epsilon_{x;eff}(s)^2 \equiv \langle x(s)^2 \rangle \langle x'(s)^2 \rangle - \langle x(s)x'(s) \rangle^2$. After replacing the expressions for position and angles and consider that the alpha function and dispersion derivative are zero on the ID

$$\epsilon_{x_{eff}}(s_{ID}) = \sqrt{\epsilon_x^2 + \mathcal{H}_x(s_0)\epsilon_x\sigma_\delta^2}$$

dispersion

Double Bend Achromat (DBA)

Triple Bend Achromat (TBA)

Quadruple Bend Achromat (QBA)

Minimum Emittance Lattice (MEL)

Dispersion suppressors

- Dispersion has to be eliminated in special areas like injection, extraction or interaction points (orbit independent to momentum spread)
- Use dispersion suppressors
 - □ Eliminate two dipoles in a FODO cell (missing dipole)
 - Set last dipoles with

different bending angles

$$\theta_{1} = \theta(1 - \frac{1}{4\sin^{2}\mu_{\rm HFODO}}) \qquad \text{Arc} \qquad \begin{array}{c} \text{Dispension} \\ \text{suppressor} \end{array} \qquad \text{Straight} \\ \theta_{2} = \frac{\theta}{4\sin^{2}\mu_{\rm HFODO}} \\ \hline \text{For equal bending angle} \\ \text{dipoles the FODO phase} \\ \text{advance should be equal} \\ \text{to } \pi/2 \end{array}$$

Chasmann-Green cell

- Double bend achromat with unique central quadrupole
- Achromatic condition is assured by tuning the central quadrupole
- Minimum emittance with a quadrupole doublet in either side of the bends
- The required focal length of the quad is given by

$$f = \frac{1}{2}(L_{\text{drift}} + \frac{1}{2}L_{\text{bend}})$$

and the dispersion

$$D_c = (L_{\rm drift} + \frac{1}{2}L_{\rm bend})\theta$$

Disadvantage the limited tunability and reduced space

Lattices, USPAS, January 2008

- Central triplet between the two bends and two triplets in the straight section to achieve the minimum emittance and achromatic condition
- Elettra (Trieste) uses this lattice achieving almost the absolute minimum emittance for an achromat
- Disadvantage the increased space in between the bends

- Original lattice of ESRF storage ring, with 4 quadrupoles in between the bends
- Alternating moderate and low beta in intertions

- Original lattice of ESRF storage ring, with 4 quadrupoles in between the bends
- Alternating moderate and low beta in insertions

General double bend structure

- Reduce emittance by allowing dispersion in the straight sections
- ESRF reduced emittance almost halved the emittance achieved

Theoretical minimum emittance optics

Triple Bend Achromat

- Three bends with the central one with theoretical minimum emittance conditions
- Strict relationship between the bending angles and lengths of dipoles in order to achieve dispersion matching $\frac{L_2^3}{\rho_2^2} = 3\frac{L_1^3}{\rho_1^2}$
 - A unique phase advance of 255° is needed for reaching the minimum emittance
 - This minimum is equal to the one of the DBA Example, the Swiss Light Source

Source	Energy			ΣL_{SS}	8.0
	(GeV)	Θ	C(m)		(nm.rad)
ALS	1.9	0.1745	197	81	5.6
BESSYII	1.9	0.1963	240	89	6.4
DIAMOND	3	0.1309	562	218.2	2.74
ESRF	6	0.09817	844	201.6	4
ELETTRA	2	0.2618	258	74.78	7
SLS	2.4	0.2440	288	63	5
SOLEIL	2.75	0.1963	354	159.6	3.7

Circumference and periodicity

Circumference choice implicates

- □ Tunnel length should be small to reduce cost
- Optics constraints necessitate circumference increase
- Available spaces should not be reduce for all necessary equipment to fit
- Sometimes it should be a multiple of the RF harmonic number and the RF wavelength
- □ Varies from a few 1m to 27km (LEP)
- Large Periodicity implies
 - □ Simplicity in design and operation
 - Stability for dangerous resonance crossing (avoid only structural ones)
 - Reduction of cost for a few types of magnets
 - □ Varies from 1 (DORIS) to 40 (APS)

Tune and working point

In a ring, the **tune** is defined from the 1-turn phase advance $Q_{x,y} = \frac{1}{2\pi} \oint \frac{ds}{\beta_{x,y}(s)}$

i.e. number betatron oscillations per turn

Taking the average of the betatron tune around the ring we have in smooth approximation

$$2\pi Q = \frac{C}{\langle \beta \rangle} \to Q = \frac{R}{\langle \beta \rangle}$$

- Extremely useful formula for deriving scaling laws
 The position of the tunes in a diagram of horizontal versus vertical tune is called a working point
- The tunes are imposed by the choice of the quadrupole strengths
- One should try to avoid **resonance conditions**

Lattices, USPAS, January 2008

- A. Streun, Lattices and emittance, CAS School on Synchrotron radiation and free electron lasers, 2003.
- A. Nadji, Lattices for light sources, CERN Accelerator School, October 2005.
- A. Wolski, Low emittance machines, CERN Accelerator School, September 2007.
- K.Wille, The physics of Particle Accelerators, Oxford University Press, 2000.
- S.Y. Lee, Accelerator Physics, 2nd edition, 2004.