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Outline
Lattice design phases and strategy
Building blocks, magnetic multi-pole
expansion
Reminder on matrices and betatron functions
Low emittance lattice conditions
Examples of low emittance lattices
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Lattice design phases
 Initial preparation

Performance
Boundary conditions and constraints
Building blocks (magnets)

Linear lattice design
Build modules, and match them together
Achieve optics conditions for maximizing performance
Global quantities choice working point and chromaticity

Non-linear lattice design
Chromaticity correction (sextupoles)
Dynamic aperture

Real world
Include imperfections and foresee corrections
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Lattice design inter-phase
Magnet Design: Technological limits, coil space, field quality
Vacuum: Impedance, pressure, physical apertures, space
Radiofrequency: Energy acceptance, bunch length, space
Diagnostics: Beam position monitors, resolution, space
Alignment: Orbit distortion and correction
Mechanical engineering: Girders, vibrations
Design engineering: Assembly, feasibility
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Other devices

Synchrotron radiationNumber of periods,
wavelength, field and gapUndulators, wigglers

Keep high vacuumPassiveVacuum pumps

Position, beam parameters
measurement

Passive

Beam position monitors, other
instrumentation

Synchrotron radiation
absorptionAbsorbers

Coupling correctionIntegrated skew quad fieldSkew quadrupoles

Restoring periodicityIntegrated quad fieldQuadrupole corrector

Orbit correctionOrbit corrector
Integrated dipole field

Kicker
injection

Position and widthSeptum

Acceleration, phase
stabilityRF phase and VoltageRF cavities

PurposeParameterDevice
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A typical lattice for a storage ring
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Hierarchy of building blocks

A. Streun, CAS 2003
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Magnetic multipole expansion
 From Gauss law of magnetostatics, a vector potential exist

 Assuming a 2D field in x and y, the vector potential has only one
component As. The Ampere’s law in vacuum (inside the beam pipe)

 Using the previous equations, the relations between field components
and potentials are

i.e. Riemann conditions of an analytic function

There exist a complex potential of z = x+iy with a
power series expansion convergent in a circle with
radius |z| = rc (distance from iron yoke)

x

y
iron

rc
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Magnetic multipole expansion II
 From the complex potential we can derive the fields

 Setting     we have

 Define normalized units 

on a reference radius, 10-4 of the main field to get

 Note: n’=n-1 is the US convention
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Magnet definitions
 2n-pole:
          dipole      quadrupole       sextupole        octupole …

n:          1                   2                     3                      4    …

Normal: gap appears at the horizontal plane
 Skew: rotate around beam axis by π/2n angle
 Symmetry: rotating around beam axis by π/n angle, the field

is reversed (polarity flipped)
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Magnetic field and aperture

Coil width should be taken into account for space
considerations

Apertures as large as necessary, as small as possible
depending on acceptance imposed by lattice (a few
centimeters for all main magnets)

Current is scaled as the nth power (multi-pole order) of the
radius

 Pole-tip field below 1.8T (normal conducting magnets)

A. Streun, CAS 2003
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Generalized transfer matrix

With

Dipoles: Quadrupoles: Drifts: 
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Betatron motion reminder
 The linear betatron motion of a particle is described by

and

with  the twiss functions
the betatron phase

The beta function defines the envelope (machine aperture)

Twiss parameters evolve as
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Lattice section transfer matrix
 Generalized transfer matrix

 Periodic cell

 Mirror symmetric cell
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Low emittance lattice

RF cavities designLattice design
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Equilibrium emittance reminder

with the dispersion emittance defined as

 For isomagnetic ring with separated function magnets the
equilibrium emittance is written

 Smaller bending angle and lower energy reduce emittance
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Twiss functions through a dipole
Consider the transport matrix of a bending magnet (ignoring

edge focusing)

 Consider at its entrance the initial optics functions
 The evolution of the twiss functions, dispersion  and dispersion derivative

are given by
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Average dispersion emittance
 The dispersion emittance through he dipole is written as

and its average along the dipole  of length l
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 Take the derivative of the dispersion emittance with respect to the
initial optics functions and equate it to zero to find the minimum
conditions

 Non-zero dispersion (general case)

      and
 Zero dispersion (and its derivative)

Optics functions for minimum emittance
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 In the 0-dispersion case,

Minimum emittance conditions
 In the general case, the equilibrium emittance takes the form

and expanding on θ we have

 The second order term is negligible
(less the 1% for θ < 20 deg.)

 Note that in both cases the emittance
depends on the 3rd power of the
bending angle

 The emittance for non-zero
dispersion is 3 times smaller

2 2

2 2
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Optics functions
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Deviation from the minimum emittance
 Introduce the dimensionless quantities

and
 Introduce them into the expression of the mean dispersion

emittance to get

 The curves of equal relative
emittance are ellipses

 The phase advance for a 
mirror symmetric cell is

 The optimum phase 
advance for reaching the 
absolute minimum emittance (F=1) is unique (284.5o)!
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Effective emittance

    Reaching the minimum
theoretical emittance

Horizontal dispersion
in the straight section

    Enlargement of the beam
size through the electron
energy spread at the ID

The brilliance is inversely proportional to

the effective emittance
After replacing the expressions for position and angles and consider that the
alpha function and dispersion derivative are zero on the ID
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Low emittance lattices

Double Bend Achromat
(DBA)

 Triple Bend Achromat
(TBA)

Quadruple Bend
Achromat (QBA)

Minimum Emittance
Lattice (MEL)

dispersion
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Dispersion suppressors
 Dispersion has to be eliminated in special areas like injection,

extraction or interaction points (orbit independent to
momentum spread)

 Use dispersion suppressors
 Eliminate two dipoles in a FODO cell (missing dipole)
 Set last dipoles with

different bending angles

 For equal bending angle
dipoles the FODO phase
advance should be  equal

    to π/2
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Chasmann-Green cell
 Double bend achromat with

unique central quadrupole
 Achromatic condition is

assured by tuning the central
quadrupole

 Minimum emittance with a
quadrupole doublet in either
side of the bends

 The required focal length of the
quad is given by

and the dispersion

 Disadvantage the limited
tunability and reduced space
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DBA with triplet

 Central triplet between the two bends and two triplets in the straight section to
achieve the minimum emittance and achromatic condition

 Elettra (Trieste) uses this lattice achieving almost the absolute minimum emittance
for an achromat

 Disadvantage the increased space in between the bends
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Expanded DBA

 Original lattice of ESRF storage ring, with 4 quadrupoles in
between the bends

 Alternating moderate and low beta in intertions
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Expanded DBA II

 Original lattice of ESRF storage ring, with 4 quadrupoles in
between the bends

 Alternating moderate and low beta in insertions
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General double bend structure

 Reduce emittance by allowing dispersion in the straight
sections

 ESRF reduced emittance almost halved the emittance
achieved
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Theoretical minimum emittance optics

 Old Super-Aco ring could operate in a
theoretical minimum emittance optics

 Structure mostly used in damping rings
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Triple Bend Achromat
 Three bends with the central one with theoretical minimum emittance

conditions

 Strict relationship between the bending angles and lengths of dipoles in

order to achieve dispersion matching

 A unique phase 
advance of 255o is 
needed for reaching 
the minimum emittance

 This minimum is equal
to the one of the DBA

 Example, 
the Swiss Light Source
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Light sources performance
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Circumference and periodicity
 Circumference choice implicates

 Tunnel length  should be small to reduce cost
 Optics constraints necessitate circumference increase
 Available spaces should not be reduce for all necessary

equipment to fit
 Sometimes it should be a multiple of the RF harmonic number

and the RF wavelength
 Varies from a few 1m to 27km (LEP)

 Large Periodicity implies
 Simplicity in design and operation
 Stability for dangerous resonance crossing (avoid only

structural ones)
 Reduction of cost for a few types of magnets
 Varies from 1 (DORIS) to 40 (APS)
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Tune and working point
 In a ring, the tune is defined from the 1-turn phase

advance

i.e. number betatron oscillations per turn
 Taking the average of the betatron tune around the

ring we have in smooth approximation

 Extremely useful formula for deriving scaling laws
 The position of the tunes in a diagram of horizontal

versus vertical  tune is called a working point
 The tunes are imposed by the choice of the

quadrupole strengths
 One should try to avoid resonance conditions
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Ideal versus real lattice
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