Non-linear dynamics, USPAS, January 2008

i

Non-linear dynamics

Yannis PAPAPHILIPPOU
CERN

United States Particle Accelerator School,

University of California - Santa-Cruz, Santa Rosa, CA
14th — 18t January 2008



Summary

B Driven oscillators and resonance condition

B Field imperfections and normalized field errors
B Perturbation treatment for a sextupole

B Poincaré section

B Chaotic motion

B Singe-particle diffusion

Dynamics aperture
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B Damped harmonic oscillator:
2
d°u(t) | o du(t) - w2u(t) = 0
dt? Q di
Q is the damping coefficient (amplitude decreases with
time)
w, is the Eigenfrequency of the harmonic oscillator

B An external force can pump energy into the system
d*u(t)  wo du(t) 5 B
g + 0 di + wiu(t) = — cos(wt)
B General solution u(t) = Uup, (t) + Ugy (t) with
ust(t) = U(w) cos(wt — a(w))

w the frequency of the driven oscillation

Amplitude U(w) can become large for certain
frequencies 3
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U(0)
V= ()% + (%)

« Without or with weak damping a
resonance condition occurs for w = @,

Uw) =

* Infamous example:

Tacoma Narrow bridge 1940

excitation by strong wind on the
eigenfrequencies
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Pertu

B Hill's equations with driven harmonic force

dzu(s) 2
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T Fwiu(s) = F(u(s), s)

where the F is the Lorentz force from perturbing fields

Linear magnet imperfections: derivation from the design dipole
and quadrupole fields due to powering and alignment errors

Time varying fields: feedback systems (damper) and wake fields
due to collective effects (wall currents)

Non-linear magnets: sextupole magnets for chromaticity correction
and octupole magnets for Landau damping

Beam-beam interactions: strongly non-linear field
Space charge effects: very important for high intensity beams

non-linear magnetic field imperfections: particularly difficult to
control for super conducting magnets where the field quality is
entirely determined by the coil winding accuracy



Locali:

*Periodic delta function

Non-linear dynamics, USPAS, January 2008

{1 for ‘s’ =s, 5 y
d,(s—s,) = 0 otherwise and fL(S—SO)S=1

*Equation of motion for a single perturbation in the storage ring

d?u(s)
T -wiu(s) = 0r(s — so)lF(u(s), s)
*Expanding in Fourier series the delta function
d? [
dlfs(;) - wpu(s) = % ;COS(me%)F(u(s), s)

Infinite number of driving frequencies!!!

*Recall that the driving force can be the result of any multi-pole
o

By +iBy = Y (b, —iay)(z +iy)" "

n=1
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Resonance c m‘.’s

Non-linear dynamics, USPAS, January 2008

*Equations of motion (u = x or y) including all multi-pole errors
dQU(S) 2 Ny, T S
T3 + wiu(s) =€ +2:< g my ;T =YY COS(Qﬂ'mE)
Ng+Ny<n,m
*Solved with perturbation theory approach
UZU0+€U1—|—€2U2‘|—... with
uo(s) = ug cos(2rQs/C + ¢g) and wy = %TQ

2
2
*At first ordg:r d ;‘;;2(3) twdui(s) =€ > @nparm COS(%S(TL;;Q:U +ny,Qy 4+ m))

/ /
[ NN ny, <ng,ny, <ny

0.8

Resonance condition

Ny Qr +15,Qy +m =0

0.6 |-

04 r

There are resonance lines everywhere !!!

02 r




*Regions with few
resonances:

n. Q. +n;Qy +m =20

*Avoid low order
resonances
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«< 12t order for a proton
beam without damping

< 3rd & 5th order for
electron beams with
damping

*Close to coupling
resonances: regions
without low order
resonances but relatively
small!
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Single Se ..%

*Consider a thin sextupole perturbation ~ F'(S) = (s — sg )l 5 :130

*Equations of motion

d2
;;2(8) +wiry(s) = 2o~ 5C Z cos( 27Tm

*With wo(S) — X0 COS(WOS - ¢0)

*The equation 1s written

d*x1(s Sl s Sl
d;2( ) + wiry(s) = A2 Zcos 27Tmc) A2 Zcos (21 (m +2Q) = )
‘Resonance conditions (), + m = Q 3CQ, +m =0

intéger third iffteger
*No exact solution
*Need numerical tools to integrate equations of motion
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Poincaré S 0
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*Record the particle coordinates at one
location (BPM)

*Unperturbed motion lies on a circle (simple
rotation)

*Resonance 1s described by fixed points

*For a sextupole Sl

Az’ = %F(s)ds — Az’ = 5 X

*The particle does not lie on a circle!
*The change of tune per turnis ~ AQ o< z°

A X' w, A X/ w, A X'/,
3
A¢turn
2
o) |« o 0/]
R 2 ! \
R-+HA 10



O Topology of

*Small amplitude, regular motion

Large amplitude, instability, chaotic

motion and particle loss

*Separatrix: barrier between stable
and unstable motion (location of
unstable fixed points)
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O first order terms:

e 2 chromaticities ¢, &,
¢ 2 off-momentum resonances — dB/ds — £3) = 92Q /96>
e 2 terms — integer resonances ().,
e 1term — 3" integer resonances 3(),
e 2 terms — coupling resonances (), =+ 2(),,
13 second order terms:
e 3 tune shifts with amplitude: 00),./0.J,, 0Q./0J, =0Q,/0]., 0Q,/0],
e 8 terms — octupole like resonances: 4(C),.20), & 20),, 40Q),, 20)... 2C),,
e 2 second order chromaticities: 92(),. /05* and 0°Q),,/I5°
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B Keep chromaticity sextupole strength low

B Include sextupoles in quadrupoles for more flexibility
B Try an interleaved sextupole scheme (-1 transformer)
B Choose working point far from systematic resonances
M]terate between linear and non-linear lattice

Y [mm]
| - ,
*; / ',’ \ ~ Physical Aperture
| : \ (beampipe)
7 | \
| r } .
2 | ! | Dynamic aperture:
a4 y
2 | . :
5 ,"I | . only chromaticity correction
5 :' . (2 sextupole families)
& , I
5 ! : 1st and 2nd order optimization
‘. | | (9 sextupole families)
S |
5 | '
;é | I 'I ___required for injection
g T R e .
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B Oscillating electrons 1n storage ring generally obey “quasi-harmonic”
motion close to the origin for a “good working point”

B [arge amplitudes sample more non-linear fields and motion becomes
chaotic - 1.e., the frequency of oscillation (tune) changes with turn number.

B Motion close to a resonance also exhibits diffusion

B Frequency map analysis examines dynamics in frequency space rather
than configuration space.

B Regular or quasi-regular periodic motion 1s associated to unique tune
values in frequency space

B [rregular motion exhibits diffusion in frequency space, 1.e. tunes change

B The mapping of configuration space (x and y) to frequency space (Q, and
Q,) 18 regular for regular motion and irregular for chaotic motion.

B Numerically integrate the equations of motion for a set of 1nitial
conditions (x, y, x’,y’) and compute the frequencies as a function of time

B Small amplitude, regular motion

B [arge amplitude, chaotic motion and particle loss ”



ONAFF al 0
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Quasi-periodic approximation through NAFF p ot
algorithm f; (1) = Z aj,k:ew]’k

k=1
of a complex phase space function [fj(t) = q;(t) + ip;(t)
defined over t = T,
for each degree of freedom J = 1,...,n with Wk = k;-w

and a;f = Aj’kez¢j’k

Advantages of NAFF:

a) Very accurate representation of the “signal” f;(t) (if quasi-periodic)
and thus of the amplitudes %,k

b) Determination of frequency vector w = 2nv = 27 (v1,v2,...,Vn)
1
with high precision — for Hanning Filter
T
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« Determination of tune diffusion vector

R™ — R
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B Choose coordinates (x;, y;) with p, and p,=0

B Numerically integrate the phase trajectories through the lattice for sufficient
number of turns

B Compute through NAFF Q, and Q, after sufficient number of turns
BMPlot them in the tune diagram
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two plots

B Regular motion represented by

B AIll dynamics represented in these
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B Resonances appear as distorted

1 lines in frequency space (or curves

in initial condition space

B Chaotic motion is represented by
red scattered particles and defines

1 dynamic aperture of the machine
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B O. Bruning, Non-linear dynamics, JUAS
courses, 2006.
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