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[ Describe the motion of particles in g, coordinates (n
degrees of freedom from time ¢, to time ¢,

1 Describe motion by the Lagrangian function
L(g1,---sqn,qG1s- - Gn,t) with (g1, .-, qn) the

generalized coordinates and (41, ---,4n) the
generalized velocities

d The Lagrangian function definedas L =1 — V/,
i.e. difference between kinetic and potential energy

dThe integral I = /L(Qiaqiat)dt

defines the action

JdHamilton’s principle: system
evolves so as the action becomes

extremum (principle of stationary action) p
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A The variation of the action can be ertten as

to

oL oL

oW = (L(q+5q,c]+5c},t)—L(q,q,t))dtZ/ =-0q+ —-0q | dt
t1 8 aq

t1

oL, |

oW =
dq

oL

T
t1 t1 aq

[ Taking into account that 5 = 4%  the ond part of the
dt
integral can be mtegrated by parts giving

0L
i (6‘d>> 0qdt =0

A The first term is zero because dq(t1) = dq(t2) =0
so the second integrant should also vanish
providing the following differential equations for
each degree of freedom, the Lagrange equations

d OL
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dFor a simple force law contained in a potential
function, governing motion among interacting
particles, the Lagrangian is (or as Landau-Lifshitz
put it “experience has shown that...”)

— 1
L:T—V:;§miq3—V(Q1,...,qn)
d For velocity independent potentials, Lagrange
equations become
oV

0q;

=

m;{q; =

i.e. Newton’s equations.

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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dSome disadvantages of the Lagrangian formalism:

Not uniqueness: different Lagrangians can lead to same
equations

Physical significance not straightforward (even its basic
form given more by “experience” and the fact that it
actually works that way!)

JdLagrangian function provides in general 7? second
order differential equations (coordinate space)

dWe already observed the advantage to move to a
system of 2n first order differential equations,
which are more straightforward to solve (phase

space)

L These equations can be derived by the Hamiltonian
of the system ;

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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1 The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian

2 0L

where the generalised momenta are Pi = %
(

1 The generalised velocities can be expressed as a function of
the generalised momenta if the previous equation is
invertible, and thereby define the Hamiltonian of the system

J Example: consider L(q,q) = % Z mii? —V(qi,...,qn)

. ¢ . 0L
O From this the momentum can be determined as p; = 9 md;
which can be trivially inverted to provide the Hamiltonian

2

b5

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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[ The equations of motion can be derived from the
Hamiltonian following the same variational principle as for
the Lagrangian (“least” action) but also by simply taking the
differential of the Hamiltonian

1 These are indeed 2n + 2 equations describing the motion in
the “extended” phase space (¢is- - qn;P1,---sPn,t, —H)

: oL .. 0L oL
E dH = Zp}dqz + %dpz .,/dq?l dq — —dt
04 0q; ot

% 7 e ’L_Y_’ \_Y._’

; Ot ' Pi

| OH . OH

% dH = Z Qidpz pdez — —d Z apz dpz q dqz + a—dt
j d By equating terms, Hamilton’s equatlons are derived

. OH . O0H 0L  OH

g qdi = api y Pi = (9(] oy — Y

;%

10
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Q The variables (4, - - -, 4, p1,- - -, pn, t, —H) are called
canonically conjugate (or canonical) and define the

evolution of the system in phase space

[ These variables have the special property that they
preserve volume in phase space, i.e. satisfy the
well-known Liouville’s theorem

L The variables used in the Lagrangian do not

necessarily have this property
JdHamilton’s equations can be written in vector form

z=J-VH(z) withz=(¢,...,¢u,p1,=.,0n)
and V = (8%7 R 7aqn7 aplv = 78pn)

A The 2n X 2n matrix J = (; (I)) is called the
symplectic matrix

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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dCrucial step in study of Hamiltonian systems is
identification of integrals of motion

0 Consider a time dependent function of phase space.
Its time evolution is given by
d N~ (dg: 0f  dp; Of\  Of
Ef(p’q’t) N zzzl ( dt 5’qz- i dt 8pz> i ot
" (OH O0f OH Of of Of
R Z (829@ Ogi  Oq; 52%-) T Ty

ot

where [H, f] is the Poisson bracket of f with H

z UIf a quantity is explicitly time-independent and its
Poisson bracket with the Hamiltonian vanishes (i.e.
commutes with the H), it is a constant (or integral)
of motion (as an autonomous Hamiltonian itself) =

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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A The Poisson brackets between two functions of a set
of canonical variables can be defined by the

differential operator

B “/O0f Og Og Of
91 = ; (3]%‘ dq;  Op; 3%‘)
0 From this definition, and for any three given

functions, the following properties can be shown
laf 4+ bg,h| = alf,h]| +blg,h| ,a,beR bilinearity
f, 9] = —[g, f] anticommutativity

S5 lg, ]+ g, [, fl] + A, [, 9]] = O Jacobi’s identity

[fsgh] = [f, glh + glf. Al
JPoisson brackets operation satisfies a Lie algebra

13
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variable (4, P)to (Q,P) so system becomes simpler to study

[ Find a function for transforming the Hamiltonian from

[ This transformation should be canonical (or symplectic), so
that the Hamiltonian properties of the system are preserved

1 These “mixed variable” generating functions are derived by

OF OF OF: OF:

Fi(q,Q) :p; = 8—;7 Py = —an. F5(Q,p) ¢ = — ap?’ by = _an.
) ) 2}  9F, _  OF,
FQ(q,P) - P = aqz ) Q’L — 8P,L F4(p7P) gy — — apz y QZ — anL

d A general non-autonomous Hamiltonian is transformed to

OF;
H(Q7P7t):H(q7p7t)+a—tj7 j:1727374

1 One generating function can be constructed by the other
through Legendre transformations, e.g.

F2(q7P):F1(q7Q)_QP7 FS(Qap):Fl(qu)_qpa
with the inner product define as a-p = Z ¢ipi

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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L A fundamental property of canonical transformations is the
preservation of phase space volume

[ This volume preservation in phase space can be represented
in the old and new variables as

/ﬁdpid%‘ :/ﬁdpiin
i—1 i—1

O The volume element in old and new variables are related
through the ]acobian

O(P,...,P,,Q1,...,Qn)
dp;dq; = dP;d(Q);
H it (p17'°°7pn7Q17°'°7qn zl_[l Q

4 These two relationships imply that the Jacobian of a
canonical transformation should have determinant equal to 1

8(P17°"7PH7Q17“°7Q71) _ a(p17°'°7pn7Q17°"7Qn)
a(pla'“apnac_ha"'?qn) a(Pla'“aPnana"')Qn)

=1

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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d The transformation ) = —p, P = q, which interchanges
conjugate variables is area preserving, as the Jacobian is
orP  0Q 1
d(p,q) or  0Q 1 0
dq  Oq

1 On the other hand the transformation from polar to
Cartesian coordinates ¢ = Pcos(@), p = Psin() isnot,

since a(¢p) _ |—Psin@ PcosQ| _
(Q,P) cos () sin ()

[ There are actually “polar” coordinates that are canonical,

givenby ¢ = —v2PcosQ, p=+vV2Psin@Q for which

o(qp) _ |V2Psin@ v 2P cos () )
o(Q,P) — cos sin @) —

V2P V2P N

—P

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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JNeglecting self fields and radiation, motion can be
described by a “single-particle” Hamiltonian

H(x,p,t) = C\/(p -~ %A(X,t))2 + m2c? + ed(x,t)

d x = (z,y, 2) Cartesian positions
d p=(ps,py,Pz) conjugate momenta
O A= (A;,A,,A,) magnetic vector potential

Qo electric scalar potential

[ The ordinary kinetic momentum vector is written
— — _ £
P=ymv=p—-A

with V the velocity vector and v = (1 — v?/c?)~1/2 the
relativistic factor

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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d Itis generally a 3 degrees of freedom one plus time
(i.e. 4 degrees of freedom)

1 The Hamiltonian represents the total energy
H=FE =~ymc* + ed
[ The total kinetic momentum is

H2 1/2
P = ( 5 m202>
C

4 Using Hamilton's equations
(X, p) = |(x,p), H]

it can be shown that motion is governed by Lorentz
equations 20

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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Q It is useful (especially for rings) p g Peice wsiecory
to transform the Cartesian . -
coordinate system to the N
Frenet-Serret system moving p
to a closed curve, with path length s

L The position coordinates in the two systems are
connected by r =ro(s) + Xn(s) + Yb(s) = zux + yuy + zu,

A The Frenet-Serret unit vectors and their derivatives

. d d2
are defined as (¢, n b) = (--ro(s), —p(s) 7 5To(s),t x n)
S S
d t 0 ~o(s) 0 t
)= 0 0 7(s) n
> \b ﬁ 0 —7(s) b

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013

with p(s) the radius of curvature and 7(s)the torsion
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JdWe are seeking a canonical transformation between

(a,p) = (Q,P) or
(ajayvz?pwapyapz) — (X,Y,S,PZE,Py,PS)

L The generating function is
OF3(p,Q) dFs(p,
By using the relationship between the coordinates,

the generating function is
F3(p,Q)=-p-r+13(Q)=—-p-r

and, for planar motion, the momenta ar)e(
P = (Px, Py, PS) = p-(n, b, (1 + ;)t)
L Finally, the new Hamiltonian is given by

(Ps — £A,)?
< + m2c2+ed

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013

H(Q,P,t) = C\/(PX — EAX)Q + (Py — ZAY)Q 4



4>

The Cockcroft Institute!

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee [AI

[ It is more convenient to use s, instead of the time as
the independent variable

[ First, note that the Hamiltonian can be considered
as a 4 degree of freedom, where the 4t coordinate is
time and its conjugate momentum is £ = —H

In the same way the new Hamiltonian with the path

length as the independent variable is just
PS — —H(X, Y, t, Px, Py, Pt, S) Wlth

H = —%As—<1 + %) \/(Pt t e _m2e2 (P, - “Ax)? = (Py — ~Ay)?

1t can be proved that this is indeed a canonical
transformation

 Note the existence of the reference orbit for zero

vector potential, for which (X,Y, Px, Py, P.) = (0,0,0,0, P)

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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1 Due to the fact that longitudinal (synchrotron)
motion is much slower then the transverse
(betatron) one, the electric field can be set to zero
and the Hamiltonian is written as

~ e X Ho g 5 o e 5 e
— —_ — - —\)2 _ — (P, — - — — —Av )2
H CAS <1—|— IO(S)) \/‘( C) m C, (P CAX) (Py . y)

P2
O The Hamiltonian is then written as
RS- (1 25 ) (P2 = (P g = (P - a2
L If static magnetic fields are considered, the time
dependence is also dropped, and the system is 2
degrees of freedom + “time” (path length)

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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[ Due to the fact that total momentum is much larger
then the transverse ones, another transformation
may be considered, where the transverse momenta
are rescaled

(QP) — (@p) or
(X,Y,t,Px,Py,P) +— (Z,9,t,Ps,Dy,Dt) = (X,Y, —ct,

Py Py P

P, Py, Poc

(1 The new variables are indeed canonical if the
Hamiltonian is also rescaled and written as

— - H z 5, m2c? _ _ _
H(Z, G, T, Pos Py, Pt) = o5 = —€As— (1 + —) \/pf — (Do —€eAz)? — (py — eAy)?

)

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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1

0 Along the reference trajectory p:o = B and
dt‘ _ 0H ’ 1 ’
P=P, _3pt P=P, Pto B,

A It is thus useful to move the reference frame to the
reference trajectory for which another canonical

transtormation is performed
(@p) = (4p) or
S — 8o 1

A

(2,98, Pa Py Pe) = (2,8, Das Pys 1) = (2,5, + —— G P PP )
L The mixed variable generating function is

(§,p) = (8F28(<‘1 D) 3F2(<‘1 15)) providing
Y P ,

Fz(q,p)ziﬁx+ypy+(t+ 5 ) (Di
dThe Hamﬂtoman is then 0
1 1

EH(&, 9,8, Pus Pys Pr) = 5o (50 +pr)—eAs— (1 + m) \/(ﬁt + E)Q TRE (P — €Az)? — (By — €A,)?

S — S0 1

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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 First note that p: =p: — — =Dt — Do = ‘ D=5
Bo Py
and [ =1t .
QdIn the ultra-relativistic limit 8o — 1, —5— — 0
and the Hamiltonian is written as 07

H (2, Py Py, 0) = (140) —e A~ (1 + %) \/(1 +0)2 — (pr — €A,)? — (py — €A,)?

where the “hats” are dropped for simplicity

L 1If we consider only transverse field components, the
vector potential has only a longitudinal component
and the Hamiltonian is written as

H(z,y,l,pz,Dy,0) = (1 +0) — eAy, — (1+%S)) \/(1+5)2— 2 — p2

¢ (dNote that the Hamiltonian is non-linear even in the
absence of any field component (i.e. for a drift)! .

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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L It is useful for study purposes (especially for
finding an “integrable” of the Hamiltonian) to make

an extra approximation

1 For this, transverse momenta (rescaled to the
reference momentum) are considered to be much
smaller than 1, i.e. the square root can be expanded.
Considering also the large machine approximation

r << p , (dropping cubic terms), the Hamiltonian

is simplified to
2 2
v T 1+o0 A
H = Pe Py z(+9) eAs
2(14+0)  p(s)
L This expansion may not be a good idea, especially
for low energy, small size rings

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B Assume a simple case of linear transverse magnetic

fields, B, = bi(s)y
B, =—bo(s) +bi1(s)x
main bending field — By = bo(s) = 81;((’5) T
normalized quadrupole K(s) = bi(s)-% = bl(S) 1/m?]
gradient P o
magnetic rigidity Bp=—""T - m]

B The vector potential has only a 1ong1tudmal which
in curvilinear coordinates is

_ 1 0As _ 1 O0A,
Do = Tim a0 Py T g o

which can be integrated to give

2

AS(CU,yys) — % [—ﬁ — (—p(i)Q + K(S)) % + K(S)%] — POC As(l‘aymsz)g

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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2 2
R 2 2 0 x2 K(s)/ 2 2
H=g05s) ~ o0 T2z T2 (& —Y)
dx  pg dp, 0 B 1 o)
ds 146 ds  p(s) <p2(3)+K( )>

B Hamilton’s equation are
dy _ py  dpy

. ds 1487 ds = K(s)y
and they can be written as two second order uncoupled

differential equations, i.e. Hill’s equations

K,
1
1 1 )
z'" + —|—K(S)>x:
5 Gor
Jlr Ls) P with the usual solution for
y//_1_|_ K(S)y:O 0 =0 and U=,y
- -
K u(s) = v/ €eB(s) cos(¥(s) + o)
Yy €

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B There is a canonical transformation to some optimal set of
variables which can simplify the phase-space motion

B This set of variables are the action-angle variables

B The action vector is defined as the integral J = ]{ pdq
over closed paths in phase space.
B An integrable Hamiltonian is written as a function of only
the actions, i.e. Hy = Hy(J). Hamilton’s equations give
OHo(J)

J = _ag(;i'n = (0 = J; = const.

i.e. the actions are integrals of motion and the angles are
evolving linearly with time, with constant frequencies
which depend on the actions

B The actions define the surface of an invariant torus,
topologically equivalent to the product of n circles 31

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B Considering on-momentum motion, the Hamiltonian can

be written as , ,
H = pw"—py L Ka(s)z®—Ky(9)y

2 | 2
B The generating function from the original to action angle
variables is , ,

Fi(2,9, 00, 0035) = = 35— tan 6 (s) + ax(s)] — 5 ;y oy [tan 84(3) + ay(5)

B The old variables with respect to actions and angles are
’LL(S \/25u J COS ¢u( ) ) pu(s) T (5) (Sln ¢u( ) T Cku(S) COS ¢u(5))
and the Hamiltonian takes the form ;
Ho(Jas Ty 8) = 52855 + 5,65
B The “time” (long. Position) dependence can be eliminated
by the transformation to normalized coordinate

u\ (7 0\ uyor (UY\ cos(vo)\ with , _ 1 [ du
<U><£ ﬂ) () <u> _m<sin(y¢)> 2w 3(s)

32

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013



4>

The Cockceroft Institut
of Accelerator Science and Technolog -

2

B Considering the general expression of the the longitudinal
component of the vector potential is

In curvilinear coordinates (curved elements)

O

B T b, + ta, Cntl
A, =(1+ p(s))BO%e;) - (@ +ii/)
b, + ta, \n
In Cartesian coordinates As = BoRe Z nt 1 (z + 1)
n=0
with the multipole coefficients being written as
1, = ! 0 B and p, = L 0 B,
Bon! 0x™ lz=y=0 Bon! 0xz™ |lz=y=0

B The general non-linear Hamiltonian can be written as

H (2, Y, Pas Py, ) = Ho(2, Y, D2 Dy, 8) + Y by i, ()25
ka ks

with the periodic functions P, &, (5) = hi, k, (s + C)

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B Consider a general Hamiltonian with n degrees of freedom
H(J, P, (9) — HO(J) + Elfl(J7 L, 9) + 0(62)
where the non-integrable part H;(J, ¢, 0)is 2mw-periodic
on the angles ¢ and the “time” 6

<i:
The Cockeroft Institutels
0!
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B Provided that € is sufficiently small, tori should still exist
but they are distorted

B We seek a canonical transformation that could “straighten
up' the tori, i.e. it could transform the non-integrable part
of the Hamiltonian (at first order in €) to a function only of
some new actions H(J) plus higher orders in €

B This can be performed by a mixed variable close to identity
generating function S(J,¢,0) = J - ¢ + €51 (J, ¢, 0) + O(€?)
for transforming old variables to new ones =
(J, P)

B |n principle, this procedure can be carried
to arbitrary powers of the perturbation

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B By the canonical transformation equations, the old action
and new angle can be also represented by a power series in €

J=J4 25 e.0) + O() J = J4 25 9.0) + O(?)
dp 0P

— aSl(J_7 P, 0) 2 o — asl(ja P, @) 2
j— — O j— — —

P =@+e 57 + O(e?) Y =@ —¢ 57 + O(€”)

B The previous equations expressing the old as a function of
the new variables assume that there is possibility to invert
the equation on the left, so that S1(J,®,f) becomes a
function of the new variables

B The new Hamiltonian is then _
o - _ 051(J,p,0
(T, ,0) = HI(T, ), 0(7, 3),0) + e 2o o )+ o)

B The second term is appearing because of the “time

dependence through 6

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B Expand term by term the Hamiltonian H(J(J, @), ¢(J,®),0)

to leading order in €

Ho(J(J,@)) = Ho(J) + _OHo(J) 951(J, &,0)

0J 0@
eH1(J(J, @), ¢(J,9),0) = eH1(J, ) + O(c”)
B The new Hamiltonian can also be expanded in orders of €
E:ﬁo—FGHl—F...
B Equating the terms of equal orders, we obtain
Zero order Hy = Hy(J)
0S1(J, @, 0)
20

+ O(€?)

First order H; =

where the frequency vectoris  w(J) = ~

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B From the first order Hamiltonian, the angles have to be
eliminated. For this purpose, it can be split in two parts:

11" _
Average part: (Hj)g = (%) %Hl(J,QZD)dQZD

Oscillating part: {H 1 } = Hy — (H 1 > @
B The 15t order perturbation part of the Hamiltonian then

becomes B

_ 051(J,@,0 —. 051(J,p,0 = _ .

iy = PUE20 () 2D (e + (. 9))
B Thus, the generating function should be chosen such that

the angle dependence is eliminated, for which

F[1(J):<H1(J,<P)>g5 and 851(89 ?.9) w(J) - 951, (’0"9):_{}[1(']_795)}

B . 0p .
B The new Hamiltonian is a function of the new actions

H(J) = Ho(J) + € (Hi(J,@))5 + O(¢?)

with the new frequency vector .
o(J) = ag,(fj) =w(J) + 66<H1£§Z_’(’0)>¢ + O(€?) 38

=
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B The question that remains to be answered is whether a
generating function can be found that eliminates the angle

dependence

=

B The oscillating part of the perturbation and the generating
function can be expanded in Fourier series

{H ( (J, )} = ZHlk )¢k @+p0) S ( Zslk Z(k @+p0)

with k-o=koi+- -+ k,0n
B Following the relationship for the angle elimination, the
Fourier coefficients of the generating function should

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013

satisfy _ . Hy(J) .
Slk(J)_zk-w(J_)—kp with k.,p#0
B Then, the generating function can be written as
= - Hyy (J) (k-
S(J.3)=dJ - \ i(k-@+pl) 1 (2
(J, ) $ + e Zk-w(])+p€ + O(e7)

k=+#0 39
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B |n principle, the technique works for arbitrary order, but
the disentangling of variables becomes difficult even to 2nd
order!!!

B The solution was given in the late 60s by introducing the
Lie transforms (e.g. See Deprit 1969), which are
algorithmic for constructing generating functions and were
adapted to beam dynamics by Dragt and Finn (1976)

B On the other hand, the problem of small denominators due
to resonances is not just a mathematical one. The inability
to construct solutions close to a resonance has to do with
the un-predictable nature of motion and the onset of chaos

B KAM theory developed the mathematical framework into
which local solutions could be constructed provided some
general conditions on the size of the perturbation and the
distance of the system from resonances are satisfied

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B Original idea of Kolmogorov (1954) (super-convergent series expansion)
later proved by Arnold (1963) and Moser (1962)

B [f a Hamiltonian system is subjected to weak nonlinear perturbation,
some invariant tori are deformed and survive

B Trajectories starting on one of these tori remain on it thereafter,
executing quasi-periodic motion with a fixed frequency vector
depending only on the torus.

B The family of tori is parameterized over a Cantor set of frequency
vectors, while in the gaps of the Cantor set chaotic behavior can occur

B The KAM theorem specifies quantitatively the size of the perturbation
for this to be true.

B The KAM tori that survive are those that have “sufficiently irrational”
frequencies

B The conditions of the KAM theorem become increasingly difficult to
satisfy for systems with more degrees of freedom. As the number of
dimensions of the system increases, the volume occupied by the tori
decreases

B A complement of KAM theory for the stability of dynamical systems
were given by Nekhoroshev (1971) who proved that if the density of tori
is large all solutions will stay close to the tori for exponentially long
times showing practical stability of motion

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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perturbation and restrict the study only to one plane. The

B Consider the simple case of a periodic sextupole

Hamiltonian is written as,
2 2 3
_ pa+K(s)x Ks(s)x
H(x,ps,s) = 5 - =
where K (s)and K,(s)are periodic functions of time.

B We proceed to the transformation in action angle variables

to write the Hamiltonian in the form

J +2¢§Ks(s) J K()
B(s) 3 (s) 3v2

B [t can be shown that the average of the sextupole

H = Hy(J)+ Hy(¢,J) = (JB(5))*? cos® ¢ = (JB(s))*'? (cos 3¢ + 3 cos )

perturbation, over the angles vanishes

(F0l)), = B ()1 [ (cos36 + 3cos)do =

B Sextupoles do not provide any tune-shift at first order

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013

42



4>

The Cockcroft Institute

ccccc

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013

eeeeeeeeeeeeeeeeeeeeeeeeee

=

B The close to identity generating function is written as

S(J,0.0) = J- b+ Si(J,b,0) +
B Following the perturbation steps, the generating function

has to be chosen such that the following relationship is

satisfied 851(;9¢’ )—l—w(j) 851(8‘]¢¢’ o) _ —{H,(J,$)} with

{H1} =Hy— (H1)g = H1 = [é\%) (JB(s ))3/2 (cos 3¢ + 3 cos @)

B Following the canonical perturbation procedure the
generating function is _
T T .04 Hik(J)  i(hg40)
S(J,¢)=J-¢+i Y e + ...
oo kov(J) +p
B The only non-zero coefficients are for k¥ = 1,3 and

(j &) 7 &‘F’LKS(S) (jﬁ(S))S/Q i <6i(3¢+p0) N Sei(¢+p9)>

6v/2 3v+p v+ p

p=—00
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2

B A more common way to write generating function can be
derived by expanding both perturbation and generating
function in Fourier series of the form

$1(J,3,0) = 3 S1k(J,0)e*? and {H(J,6,0)} = 3 Hix(J,0)e™*?
k

p
B The equation relating the amplitudes is now

05
1 kv Sk + a;k = —Hyy 9W21’11Ch can be solved yielding
i e
_ H ikv(0'—0—m) 30/
Stk 2sin(mkv) /9 ke 40

B Following the canonical perturbation procedure the
generating function is

0+27m
(4 ; /
— E H ik[o+v (0 —Q—W)]del
o1 2 sin(mkv) /9 ke

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013

k
B For the sextupole and letting (s / 3y We have
PP O s [0+ 6() = U(s) — ) sma¢+w<> 9(s) — )]
o1 = 24/2 Js KS( )B(s) [ sin(7v) 3sin(3mv) d44
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B |t can be shown that at second order in perturbation theory
the Hamiltonian depending only on the actions can be

written 1 92H, (8S,\°> 0H, 84S,
Hy(J) = (=——= _
) =G <0¢) +8I?J858¢ )¢
B This can be simplified to H,(J) = (= — )
oOH K, 07 (9¢
B The two terms are &]1 — 2\}) JY25(5)3/2(cos 3¢ + 3 cos @)
08,  J¥2 [tC N g(sy32 | 080+ Y(s) —d(s) —mv) | cos3(d+P(s) —(s) —mv) |
8—¢_ 22 /, Ks(s)B(s) [ sin(7v) + sin(37v) ]d

B The 279 order Hamiltonian is given by the angle-averaged
product of the last two terms.

B [t is quadratic in the sextupole strength and the new action.
The 2nd order tune-shift is the derivative in the action

C s+C
) = G2y =12 [ aska(156)? [ K56
y [COS(¢ + (s") —Y(s) — wv) N cos (¢ +1(s') —(s) — wv) o

sin(7v) sin(37v)

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B For small perturbations, the new action variable is almost
an invariant but for larger ones phase space gets deformed
B Close to the integer or third integer resonance, canonical

1
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perturbation theory cannot be applied
B The solution is provided by secular perturbation theory
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B The general accelerator Hamiltonian is written as

H(x, Y, Pas Dys 8) = Ho(T, Y, Doy Dy, 8) + Y hiy i, (s)2" oy
. kz,ky . .
B The transverse coordinated can be expressed in action-angle

variables as
u(s) = Ju%(s) (cFPu 100D | miluter4uto)
B The Hamiltonian in action-angle variables is

%/(Ja:a Jya ?bara ¢y) — HO(Jxa Jy) =+ Hl(J:ca Jya ?bxa ¢y)
The integrable part Hq(J,, J,,) = %(V:,;Jx + vy, Jy)

The perturbation

kac ky
Hl(Jm Jya Do, Qby; S) _ Z Jalfx/QJZij/Q Z Zgj,k,l,m(S)Qi[(j_k)gbm+(l_m)¢y]
kz,ky 7 l
. s iy ke, (8) (k) (kg i /2 by /2( N\ i[(F—k)0s(8)+(1—m)B, (s)]
B The coefficients gjxim(s) = W(] ) ( z )5; (5)Byv /2 (s)ett0 R0 ’

depend on the optics, with the indexes k. =j+k, k,=1+m

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B As the coefficients hy, 1, (s) are periodic, the perturbation
can be expanded in Fourier ser1es

Hl(Jx7Jy7¢wa¢y§6) — Z Jk /2Jk /QYY Y 9j.k.lm l[(j_k)¢w+(l_m)¢y—p9]

kmyk p=—00
with the resonance driving terms

ko \ (K 11 s
oty = (szy)z—ww o f B, ey () 55272 (5) /2 ()19 (5) +(L=m)du ():+£6]

B Forng; =J—k, Ty — [ —m , resonance conditions
appear for NgVy + NylVy = P

B Goal of accelerator design and correction systems is to
minimize the resonance driving terms
Change magnet design so that 5, x, (S) become smaller
Introduce magnetic elements capable of creating a cancelling effect

Sort magnets or non-linear elements in a way that phase terms are
minimised

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B First order correction to the tunes is computed by the
derivatives with respect to the action of the average part of
perturbation. For a given term, h, k, (S s)z"*y" v the leading

order correction to the tunes are
ky/2 ki FEy

Jhe/2=-1 1
Ovy = — 2y ZZQM 7{ T =k) ¢t (I=m)dy]
X 47_‘_ 7am

Jk /2Jk: /2—1 ki Ky
x E)pr+(l—m)p,
vy = Zzgw, 7{ k) dat(1=m) )

where G k.1.m is the? average of gj.k.1,m(s)around the ring.

B In the accelerator jargon if 0Vz,y is independent of the
action, it is referred to as tune-shift, whereas, if it depends
on the action, it is called tune-spread (or amplitude
detuning)

B At first order, dv, , = 0, for odd multi-poles k. =j+k.
k, = 1 +m (trigonometric functions give zero averages). 4

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B Lagrangian Formalism

Lagrange mechanics

From the Lagrangian to the
Hamiltonian

B Hamiltonian Formalism

Hamilton’s equations

Properties of the Hamiltonian
flow

Poisson brackets and their
properties

B Canonical transformations

Preservation of phase volume
and examples

B Single particle relativistic
Hamiltonian

Canonical transformations and
approximations

Linear magnetic fields and
integrable Hamiltonian

Action-angle variables

General non-linear Hamiltonian

B Summary

=

B Canonical perturbation

theory

Form of the generating
function

Small denominators and
KAM theory

Perturbation treatment for a
sextupole

Second order sextupole tune-
shift

Resonance driving terms,
tune-shift and tune-spread

B Secular perturbation theory

Third order resonance

Fixed points for general
multi-pole

4th order resonance
Onset of chaos
Resonance overlap
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B Secular perturbation theory
- Third order resonance

- Fixed points for general
multi-pole

0 4th order resonance
1 Onset of chaos
- Resonance overlap
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B Consider a general two degrees of freedom Hamiltonian:

H(J7 90) — HO(J) + ng(Ja 90)
with the perturbed part periodic in angles:
Hi(J, ) =2 p, ke, Hir k2 (J1, J2) expli(kipr + kagpa)]
B The resonance njw; + nows = 0 prevents the convergence
of the series

B A canonical transformation can be applied for eliminating
one action: (J, ) — (J, ) using the generating function

A

F.(J,¢) = (n1p1 — nawa)J1 + 022
B The relationships between new and old variables are

Ji=nmJ1 Jo = Ja —naJy
Y1 =n1p1r —N2p2 P2 = P2
B This transformation put us in a rotating frame where the

rate of change ¢, = n1; — nas measures the deviation
from resonance 52
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B The transformed Hamiltonian is #(3, ) = Hy(3) + H1(3, )
With the perturbation written as
1 . .
= 3 Hi @ exp { L g + (s + ke |

k1i,k2
B This transformation assumes that ¢ is the slow

frequency and we can average the Hamiltonian over the
corresponding angle to obtain

P_I(j,cp)—Hg(J)—l—sHl(J gpl) W1th Ho( ) = ﬁo(j) and
Hl(j,gﬁl) <H1( 7801 — Z H—pnl png )exp(—ngpl)

B The averaging eliminated one angle and thus J, = Jo + J; =2
is an invariant of motion T

B This means that the Hamiltonian has effectively only one
degree of freedom and it is integrable
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B Assuming that the dominant Fourier harmonics for p = 0, 1
the Hamiltonian is written as

H(J, ¢p1) = Ho(J) + eHoo(J) + 2eHp,,—ny (J) cos @1
B Fixed points (J,g, ¢10) (1 e. periodic orbits) in phase space
(Jh 9251) are defined by - —o0, a{q 0
(9J1 01

B Introduce moving reference on fixed point

and expand H (J) around it AJ; = J; — Jig

B Hamiltonian describing motion near a resonance:

0*Hy(J) (AJy)?
0J72 =gy 2
B Motion near a typical resonance is like the one of the

pendulum!!! The libration frequency and the resonance

H,(AJy, ¢1) = +2eH,, _p,(J) cos

half width are 1/2
. 1/2 _ )
9 )
2c §) 9 Hold) At e =2 || 2 Hmrna (D)
W1 3 n1 —TLQ( ) A 2 A A 82FI0(3)
(9]1 J1=J10 0J,2 i 54
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B We first introduce the distance to the resonance
u:§+5,5<<1

B [t is convenient then to eliminate the “time” dependence by
passing on a “1-turn” frame, using the generating function

TV ° ds
Ey(¢,J1,8) = o1+ (208 —/o 5(2’)) = (¢ + x(s))J1

with the new angle 1)1 = ¢ — x(s) providing the Hamiltonian

2[ 3/2 3
Hy = E‘Jl = K(5)(J18)%2 cos® (11 + x(s))

B The perturbation can be expanded in a Fourier series, where
as before, only the resonant term is kept or,

ﬁl = VJ1 -+ Jf/2A3p COS(3¢1 — pé’)

in the rotating frame on top of the resonance

Hy = 6Jy + J§/2A3p cos(319) 5
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B By setting the Hamilton’s
equations equal to zero, three

2
fixed points can be found at )y, = — | o , oT  Jog = 20
5 3 37 3 345,
B For >0 all three points are
unst ab3f o Separatrix
B Close to the elliptic one at ﬁ;’ggtsgi'sts
29 = 0the motion in phase ~ \unstable
space is described by circles i oo =
that they get more and more 1173

distorted to end up in the
“triangular” separatrix uniting
the unstable fixed points

The tune separation from the
resonance (stop-band width) is 0 =

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B The single resonance accelerator Hamiltonian
(Hagedorn (1957), Schoch (1957), Guignard (1976,
1978))

H(Jxa Jy7 ¢x7 ¢y7 )

1

= J J # coS(Ng Pz + Nydy + o — )

(V +Vy )+gac yR

with g, n, €'% = gj ke lmip
B From the generating function

Ep(ba, bys Jas Iy, 8) = (Mg + nydy — p0) Ty + ¢y,
the relationships between old and new variables are

Qgﬂc — (na:¢:c + nygby —pH) , Jr = nxja:

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013

Py = Py Sy = nyJe + Jy
B The following Hamiltonian is obtained
NP, —)J ] 9 .k . . ky R
Ay gy ) = e T D Dy 2 S (gl ) cos(d + ®0)_



4>

The Cockcroft lnstltute

nologyl

=

B There are two integrals of motion
The Hamﬂtoman as it is independent on “time”
The new action J as the Hamiltonian is independent on ¢y

B The two invariants in the old variables are written as:

g J
o1 =— -4
Ny Ny

P P A 0

co = (vy — — ny)Jx + (vy — - ny)Jy + 200, ny 2 Jy* cos(Ngpdz + nydy + ¢ — pb)

B Two cases can be distinguished

ng , N, have opposite sign, i.e. difference resonance, the motion is
the one of an ellipse, so bounded

Ny , Ny have the same sign, i.e. sum resonance, the motion is the one
of an hyperbola, so not bounded

B These are first order perturbation theory considerations

B The distance from the resonance is obtained as

_2 ky—2
A = g”}’”y ToZ J, 7 (kunads + kynyJ,)

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B For any polynomial perturbation of the form z" the
“resonant” Hamiltonian is written as

Hy = 6Jy + aJs) + Jk/zAkp cos( ko)

= B Note now that contrast to the sextupole there is a non-linear
detuning term a(J2)

=

.M The conditions for the fixed points are

sin(kys) =0, 6+ 9a(J) ka/Q 1Akp cos(kiyg) =0
0J 2

B There are k fixed points for which cos(kys) = —1 and the
fixed points are stable (elliptic). They are surrounded by

ellipses

- W There are also k fixed points for which cos(k20) =1 and

the fixed points are unstable (hyperbolic). The trajectories are

Non-linear dynamics, Cockcroft Institute Lecture Course, September 2013
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B Regular motion near the UFP
center, with curves getting
more deformed towards a
rectangular shape

B The separatrix passes
through 4 unstable fixed points,
but motion seems well
contained

B Four stable fixed points exist
and they are surrounded by
stable motion (islands of
stability)
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B When perturbation becomes higher, motion around the separatrix
becomes chaotic (producing tongues or splitting of the separatrix)

The Cockcroft Institute
of Accelerator Science and Technolot

€ an 0!

B Unstable fixed points are indeed the source of chaos when a

o perturbation 1s added
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B Poincare-Birkhoff theorem states that
under perturbation of a resonance only an
even number of fixed points survives (half
stable and the other half unstable)

= B Themselves get destroyed when

£ perturbation gets higher, etc. (self-similar

¢ fixed points)

wn

2 B Resonance islands grow and resonances

= . . . .

S can overlap allowing diffusion of particles
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B When perturbation grows, the resonance island width grows

B Chirikov (1960, 1979) proposed a criterion for the overlap of two
neighboring resonances and the onset of orbit diffusion

2 1 . 1
ni+no nj+nkh

92 Hy (J)
dJ 2

B The distance between two resonances is 4., ., =

B The simple overlap criterion is
AJn mazx T AJn’ max 2 5Jn,n’

B Considering the width of chaotic layer and secondary islands, the “two
thirdS” rule apply Ajn max T Ajn’ max Z g(Sjnm/

Ji=Jio

B The main limitation is the geometrical nature of the criterion (difficulty to
be extended for > 2 degrees of freedom) 7

&
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Hamiltonian formalism provides the natural framework for studying
non-linear dynamics

The relativistic Hamiltonian is non-linear by construction and can only
be transformed to an integrable one after a series of approximations

Action-angle is the set of variables adequate for studying integrable
systems, as motion evolves on multi-dimensional tori

Perturbation of integrable Hamiltonian distorts tori and canonical
perturbation theory looks for an appropriate canonical transformation to
“straighten” tori

Small denominators (resonances) appear preventing the convergence of
generating functions

Secular perturbation theory enables the analysis of the phase space close
to a resonance, which is similar to the motion of a pendulum

Appearance of fixed points (periodic orbits) determine topology of the
phase space

Perturbation of unstable (hyperbolic points) opens the path to chaotic
motion

Resonance can overlap enabling the rapid diffusion of orbits 65



