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B Oscillators and resonance condition

B Field imperfections and normalized field errors
B Perturbation treatment for a sextupole

B Poincaré section

B Chaotic motion

B Octupole effect and fringe fields

B Singe-particle diffusion
Dynamic aperture
Frequency maps
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B Damped harmonic oscillator:
d?u(t)  wo du(t) )
| | t) =10
i g ar el

Q= %% is the ratio between the stored and lost energy per

cycle with C the damping ratio
wo is the eigen-frequency of the harmonic oscillator

B A general solution can be found by the ansatz

: u(t) = uge™

= leading to an auxiliary 2" order equation

W . .

SN2 0 wg = 0 with solutions

: @ Wwo 5 1

: Ai:—@(—li\/l—‘lQ):—woC(—li 1—§)

(=

4



(=

O Three cases can be distinguished
Overdamping ( Nreal,ie. ¢ > lor @ < 1/2): The system

exponentially decays to equilibrium (slower for larger damping
ratio values)

Critical damping ({ = 1): The system returns to equilibrium as
quickly as possible without oscillating.

Underdamping (A complex, i.e. ¢ < 1 or @ > 1/2): The system
oscillates with the amplitude gradually decreasing to zero, with a
shghtly different frequency than the Zarmonic one:

AN \ /

wg = woy/1 — (2

0.0

z(t)/x(0)
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B Consider periodic force pumping energy into the system

d*u(t)  wo du(t F
dtg ) + QO d(t ) + wiu(t) = — cos(wt)
B General solution is a combination of a transient and a
steady state term
u(t) = uy(t) + us(t)
B The transient solution corresponds to the one of the
homogeneous system (damped oscillator) and “dies” out
after some time leaving only the steady state one

us(t) = U(w) cos(wt + ¢p(w))

W the frequency of the driven oscillation

Amplitude U (w)can become large for certain
frequencies
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7t/2

U(0)

U(w) =

V= ()% +(5%)?
B Without or with weak damping a

resonance condition occurs for w = ,

B Infamous example:

Tacoma Narrow bridge 1940

excitation by strong wind on the
eigenfrequencies
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quench

)

m Colliders

0 Luminosity (i.e. rate of particle production)

N, bunch population

k, number of bunches

v relativistic reduced energy
¢, normalized emittance

B * “betatron” amplitude function at collision point

m High intensity accelerators
00 Average beam power

‘[mean current intensity
E energy
fn repetition rate
N number of particles/pulse
p p

m Synchrotron light sources

0 Brightness (photon density in phase space)

N, number of photons
&,y transverse emittances

m Performance issues due to non-linear effects

[0 Reduced dynamic aperture, lifetime and availability, beam loss (radio-activation, magnet

8



L Recali that u(s) = \/eB(s) cos(Y(s) + o)

€

u'(s) =7 (sin(¢(s) 4 o) + a(s) cos(1(s) + 1))

B(s)
B Introduce new variables

U di Q
U= —, U =""=—u++/pu,
J3u TV

)

B Hill' s equation becomes fl—u + 12U =0

VB dg

B [n matrix form (Z/{) - (ﬁ 0 ) (
U \/ig V3

2

l Floquet transformation transforms
phase space in circles
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B System becomes harmonic oscillator with frequency

(1) = ve (L) o wvut

(=

ds
B(s)

\
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B Hill’ s equations in normalized coordinates with harmonic
perturbation, using U = U, or U, and @ = @ Or @,

d*U

Top TVU = VB EEUa(60). Uy (9)

where the F is the Lorentz force from perturbing fields

Linear magnet imperfections: deviation from the design dipole and
quadrupole fields due to powering and alignment errors

Time varying fields: feedback systems (damper) and wake fields
due to collective effects (wall currents)

Non-linear magnets: sextupole magnets for chromaticity correction
and octupole magnets for Landau damping

Beam-beam interactions: strongly non-linear field
Space charge effects: very important for high intensity beams

non-linear magnetic field imperfections: particularly difficult to
control for super conducting magnets where the field quality is

entirely determined by the coil winding accuracy "
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From Gauss law of magnetostatics, a vector potential exist

V-B=0 — JA: B=VXxA

B Assuming a 2D field in x and y, the vector potential has only one
component A.. The Ampere’ s law in vacuum (inside the beam pipe)

VxB=0 — dV: B=-VV

B Using the previous equations, the relations between field components
and potentials are

oV 0A, oV 0A,
B = - = B _ ——— = -
; Ox oy ' Y Oy (9:I:y

1.e. Riemann conditions of an analytic function on

There exist a complex potential of z = x+iy with a / r.
power series expansion convergent in a circle with X
radius |z| = r, (distance from iron yoke)

A(x +iy) = As(x,y) +iV(z,y) = Z/ﬁ}n —Z n+ in)(x + iy)"

n=1
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B From the complex potential we can derive the fields

. 0 - \n—1
B, +1iB, = — (9:1:(A (x,y) + 1V (x,y)) Zn n+ iy (T + 1Y)
B Setting b, = —n\,, a,=nu,
O
: : : 1
By +1B; = E (by, — tan)(z + iy)"
n=1
B Define normalized coefficients
Y — bn e S Qn 1
"T1074By Y 7" 10-4By °

on a reference radius r, 10 of the main field to get
O
. _ T+
By, +iB, = 107" By Y (¥, — ia,)(— Jyn—1
0
n=1

B Note: »’ = n — 1 is the US convention 12
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B Hill’ s equations in normalized coordinates with single
dipole perturbation:

d*U 27/ 3/2p, .
do? - U = 15 8%%b1(9) = b1 (o)
B The dipole perturbation 1s periodic, so it can be expanded in a
Fourier series 00
by (¢) — Z blmfizm(b
m=——00

B Note that a periodic kick introduces infinite number of integer
driving frequencies

W The resonance condition occurs when [/ = TI

1.e. integer tunes should be avoided (remember orbit distortion due
to single dipole kick)

13
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B Consider single quadrupole kick in one normalized plane:
d*U _
52 + 15U = 15 82b2(d)U = ba(o)U
B The quadrupole perturbatlon is perlodlc so 1t can be expanded in
F
a Fourier series ba () = Z ———

m=—-oo

B As the perturbation 1s small insert on the right hand side the
unperturbed solution 74 ~ 74, = W} eoP L W_ e Wo?
and the equation of motion can be written as

d2u 2 : - 7. _i1(m-qv
dor U = D Wabane TV iy Wy =0

2

B The resonance conditions are ' — Vo = Vg — Vg =

1.e. integer and half-integer tunes should be avoided

B The condition m + vy = vy — m = 0 corresponds to a non-

vanishing average value b, Wthh can be absorbed 1nbthe left-hand
20

side providing a tune-shift: V2 = VO —byg or vH 5, 14
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B For a generalized multi-pole perturbation, Hill’s equation is:
d*U n N pp— o
W+V02U:Vgﬁz+lbn(¢)u ! :bn(gb)u !

B As before, the multipole coefficient can be expanded in Fourier

oo

SCI'1CS E(¢): Z meimqﬁ

m=—oo

B As before, we insert the unperturbed solution on the right side and

n—1  /m—1 __ iqu . . .
Ut mUpT = ) Wee™? the equation of motion can be written as
g=—n+1

dQZ/[ 5 n—1 o0 —.
W Tl = Z Z qunmez(m+qyo)¢
g=—n+1 m=—oc
with Wy_o=Wp_4=--=W_,10=0

B The resonance conditions are 1M, + Uy = V| with
qgq=-—-n+1,—n+3,....,n—1 i

B [f g=/ does not correspond to a vanishing coefficient (even multi-
poles), there 1s an (amplitude dependent, for n>2) frequency shift 1
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B Consider a localized sextupole perturbation in the horizontal plane
d2u 2 2 7. 2
Loz U = = 12B2bs (U2 = by (U

B After replacing the perturbation by its Fourier transform and

inserting the unperturbed solution to the right hand side
2 o)

dQZ/{ 7. _1(m-+tqrg
dng +V0u - Z Z qu3me( o) with Wi =W_1=0

g=—2 Mm=—0o0

N 3rd integer > 39 = m for ¢ = —2
B Resonance conditions: ]
integer —> 1y = m for ¢ = 0, 2

B Note that there 1s not a tune-spread associated. This 1s only true

for small perturbations (first order perturbation treatment)

B No exact solution

B Need numerical tools to integrate equations of motion
16
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B Equations of motion including any multi-pole error

d2uac 2 7 n—17/mr—1
T+ Wl = B (92U,

B Expanding perturba:fion coefficient in Fourier series and inserting
the solution of the unperturbed system gives the following series:

r—1
R . 7 _im n—1 _m—1 __ T 19z V0xPx _ — ;
brr (¢z) = E  burme P Ut R U, = z W, e U, 1 Uy, = g Wy e'duV0yPa

qe=—n+1

m=—0o0 qy=—7r+1

B The equation of motion becomes

02}

6552"” + Vgxum — Z bnrmW;; quy o (m+qeroz+qyroy) da
| . M, qx,qy
. N Resonance conditions
k | M —+ gy Vox 1 dyVoy — V0ox
=N o /
e Mt Gl T dytoy =0

with the resonance order |¢z| + |gy| + 1

0 02 04 0.6 08 1 17

There are resonance lines everywhere !!!
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B For a localized skew quadrupole we have

d*U,

3

=

Uy = @(gbm)u

BExpanding perturbation coefficient in Fourier series and inserting
the solution of the unperturbed system gives the following equation:

Uy
gz 1

B The coupling resonance are found for Qy =

Linear sum resonance

= D D buaWy et O?L’)qb"’cwnhWOy =0

m=—00 qy=-—1

-1

Linear difference resonance

m:VOa;—

- VO’y

m = Yoz — Voy

18
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B Regions with few
resonances:

M + qxVox T qylVoy — 0

B Avoid low order resonances "
W < 12% order for a proton

beam without damping e
B < 31 & 5t order for .

electron beams with damping

B Close to coupling
resonances: regions without
low order resonances but
relatively small! 02"

(=

4th & 8th llth 7th

y




B Record the particle coordinates at one Poincaré Section:

=

location (BPM) x' | w
B Unperturbed motion lies on a circle in .
normalized coordinates (simple rotation) y
A A U X
— — |
3 S
A¢tum
A U'

B Resonance condition corresponds to a
periodic orbit or in fixed points in phase

space _
B For a sextupole 5Z/{/ — ng/{Q

Non-linear dynamics, JUAS, January 2013

B The particle does not lie on a circle!

Ve + (4

20
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B Small amplitude, regular motion

(circles)

B [arger amplitude deformation of '

phase space towards a triangular shape Q<r/3

B Separatrix: curve passing through

unstable (hyperbolic) fixed points (and

going to infinity)

B [ts location (width) depends on

distance to the resonance of the 1
unperturbed tune

B Exactly on the resonance, sepratrix

collapses to a single unstable fixed

point (bifurcation)

B Stable fixed points should exist but

they are found in much larger
amplitudes

21
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B When perturbation becomes higher, motion around the separatrix
becomes chaotic (producing tongues or splitting of the separatrix)

B Unstable fixed points are indeed the source of chaos when a
perturbation 1s added

Se-06
4e-06
Q\ <\ ’/_\ H 3¢-06 |
\ G
< ;
\\\\\\\ < \> le-06 |
Y N\, s
\\\ \ \ i
D N : 0|
DNES X
\\__..// “1e-06
th
-2e-06 +
B

-3e-06 : s o
0.008 -0.006 -0.004 -0.002 0 0002 0.004 0.006
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B Regular motion near the center,
with curves getting more deformed
towards a rectangular shape

B The separatrix passes through 4
unstable fixed points, but motion
seems well contained

B Four stable fixed points exist and
they are surrounded by stable motion
(1slands of stability)
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B Poincare-Birkhoff theorem states that under
perturbation of a resonance only an even
number of fixed points survives (half stable
and the other half unstable)

B Themselves get destroyed when
perturbation gets higher, etc. (self-similar
fixed points)

B Resonance islands grow and resonances can

overlap allowing diffusion of particles

le-06

9.5e-07
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-0.004  -0.002 0.002  0.004 0.006

9e-07

8.5e-07

8e-07

7.5e-07

7e-07

0.0002 0.0004 0.0006

-0.0006 -0.0004 -0.0002
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m Adjust tunes closer to the resonance condition during
extraction

>

m Region of stable motion shrinks and particles reach the
septum diffusing through the separatrix 25
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~__Sextupole

O first order terms:

e 2 chromaticities
e 2 off-momentum resonances —dp/ds — €2 = §%2Q /962
e 2 terms — Integer resonances ().,
e | term — 37 integer resonances 3().,.
e 2 terms — coupling resonances (), + 2¢),
13 second order terms:
e 3 tune shifts with amplitude: 0Q),/0.J,., 0Q,/0J, = 0Q,/0J,., 0Q,/0J,
e 8 terms — octupole like resonances: 4()., 2Q), = 20),, 40),, 20),.. 20},
e 2 second order chromaticities: 9°Q),. /05* and 9*(Q),, /D>

m Enough sextupole families are needed to control all these terms

Non-linear dynamics, JUAS, January 2013
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B Keep chromaticity sextupole strength low

B Try an interleaved sextupole scheme (-/ transformer) to cancel first order third
resonance effect

B Choose working point far from systematic resonances

B [terate between linear and non-linear lattice
Y [mm]
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Dynamic aperture:

only chromaticity correction
\ _ -
_— (2 sextupole families)

1st and 2nd order optimization
(9 sextupole families)
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10000 -
9000 - H
8000 - J
7000 -
6000 - -

5000 -

Dipole field

4000 -

3000 -

2000 -

1000 -

Quadrupole field

0 50 100 150
z (cm)
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7000 -

6000

5000

4000 4

3000

2000

1000 -

2

- Up to now we considered only
transverse fields

» Magnet fringe field 1s the
longitudinal dependence of the
field at the magnet edges

 Important when magnet aspect
ratios and/or emittances are big

0 10 20 30 40 50 60

Z (cm)
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General field expansion for a quadrupole magnet:

_ S (—1)mg2ry2mtl -
- _m;_og (2n)Y(2m + 1)! (l>b2n+2m+1_2l
PN e W
=01=0 (2n + 1)1(2m)! 2n+2m-+1—21
= Z Z( 1)mgntiy2m (m)b[2l+1]
m,n=0[=0 (2?7,—|—1)'(2m_|_1)' [/ 2n+2m+1-21

and to leading order

9 [ 1 l

g By = y|b1— B (322 + y2)b[12] + O(5)
> _ _ 1 2 2\p[2]

2 By, = x|b1— E(3y +x%)by7" | + O(5)
g ! ]

5 B. = axybit+0()

2

The quadrupole fringe to leading order has an octupole-like effect
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First order tune spread for anctupole:

)2 | ®hh Ghw
51/y ahov Ay

where the normalized anharmonicities are

— Qi Pzi )
Ghh 167er Z QRifzi0z;
Qhy = 167 Bp ZiQ (/Ba:zayz
Ayv = 167TBp ;inﬁyzayz

Tune footprint for the SNS based on hard-
edge (red) and realistic (blue) quadrupole
fringe-field

2J,
2J,

/Byia:ml)a

5.

5.

84r

821

.81}

.80

)

Oy

o,“,»/:/’/y




=

‘ N
Quasi-periodic approximation through NAFF / . o 1t
algoritﬁm PP 5 fj (t) = kzl a; k€ “ik

of a complex phase space function fi(t) = q;(t) +ip;(t)
defined over ¢ = T,

for each degree of freedom j =1,...,n with w;, =k, w

—_ 1P
and a’j,k pu— Aj,ke ¢])k

Advantages of NAFF:

a) Very accurate representation of the “signal” f;j(%) (if quasi-periodic)
and thus of the amplitudes

b) Determination of frequency vector W = 27V = 27 (v1,v2,...,vn)
with high precision i4 for Hanning Filter
T

Non-linear dynamics, JUAS, January 2013
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B Choose coordinates 9;1'/ y;) with p, and p,=0

B Numerically integrate the phase trajectories through the lattice for
sufficient number of turns

B Compute through NAFF Q, and Q, after sufficient number of turns
B Plot them in the tune diagram

9 I 1 I 1 I 1 | 1 I 1 I I [ 1 I 1 [ 1 I T | 3'172 i l 1 I I [ || ] -)K-I ‘3
1 N s "
2 g 8,17 |— -
7 — —
5%3 — 8,168 — -
Sr~ = %7 |
L - MAP 8,166 — =i
N 4 1 > >N !
3 %2 - 8,164 — * 2 =
ol _ _ g
- %*5 = L =
L N 8,162 *6
- = 4
0_ *¥1 ¥4 %6 * 7 ] 8,16 — il -
'l ] l 1 l 1 I 1 l 1 I 1 I 1 l 1 I 1 I 1 1 J L l 1 l 1 l L
A 0 1 2838 4 % & 7T F 1 20,379 038 20381 20,382 20,383 20,384
X Vi 32
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J. Laskar, PhysicaD, 1993 EA"

" Calculate frequencies for two equal and successive time
spans and compute frequency diffusion vector:

D‘tZT — V‘tE(O,’T/Z] _ V‘tE(T/QvT]

" Plot the initial condition space color-coded with the norm
of the diffusion vector

" Compute a diffusion quality factor by averaging all
= diffusion coefficients normalized with the initial conditions

© radius
Dop =
< (]20 L 150)1/2 >R

I
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Y. Papaphilippou, PAC1999
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BAIll dynamics represented in

these two plots

14.50

14.45
B Regular motion represented
L)
by blue colors (close to zero 21440
amplitude particles or working
14.35
| : : _
-7 -6 -5 -4 -2

point)
0.008
(ep]
=
2 0.006 |
z
S~
-
S S0.004 |
*T N’
g >
z
g
S 0002}
o)
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£
L 0.000
o
z
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i

B Resonances appear as
distorted lines in frequency
space (or curves in initial

1 condition space

B Chaotic motion is represented

1 by red scattered particles and

defines dynamic aperture of the
machine
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B Integrate a large number of particles
B Calculate the tune with refined Fourier

H Plot

Vertical Tune

analysis
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oints to tune space
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Sp/p=0 @ 480 T mm mrad dp/p=0
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e . Do — D]
Tune Diffusion quality factor |[Dor = TS ERTE )
x0 y0

Working point comparison (no sextupoles)
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Variable Symbol Value

Beam energy E 7 TeV
Particle species protons
Full crossing angle 0. 300 urad
rms beam divergence ol 31.7 prad
rms beam size Oy 159 um
Normalized transv.

rms emittance ve 375 pum
IP beta function B* 0.5m
Bunch charge Ny (1 X 10"=2 x 10'?)
Betatron tune Qo 0.31

PACMAN bunch

long-range
collisions

head-on
collision

PACMAN bunch

long-range
collisions

A

m [ong range beam-beam interaction

represented by a 4D kick-map

Ay

with

/ 02
— ’I’Lpar P 02 1 — € T,y
t
62
1 1 —e 292,
0.
/ 02
2Tpr Yy _202t
Npar ——— 9o 1—e zY
D 92
Y t
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Vertical Tune

0.325

0315 f

0.310 f

YP and F. Zimmermann, PRSTAB 1999, 2002
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°*0-50 e ,
5100 // 7
/’ 4
/, /Q>’
s e‘t
d

0.285 0.290 0.295
Horizontal Tune

0.325

Long range

0.320 |

Vertical Tune

0310 | .-

0.285

Proved dominant effect of long range beam-beam effect

Dynamic Aperture (around 6c) located at the folding of the map
(indefinite torsion)

Dynamics dominated by the 1/r part of the force, reproduced by
electrical wire, which was proposed for correcting the effect

Experimental verification in SPS and installation to the LHC IPs
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$

A

E. Levichev et al. PAC2009

| ox=701277 @z=28.3182 |

LI

L |

L |

-1

-2

=2 Q 2
X, mm

Including radiation damping and
excitation shows that 0.7% of the
particles are lost during the damping

Certain particles seem to damp away
from the beam core, on resonance

1slands
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m Frequency analysis of turn-by-turn
data of beam oscillations produced
by a fast kicker magnet and
recorded on a Beam Position

Monitors

m Reproduction of the non-linear
model of the Advanced Light
Source storage ring and working
point optimization for increasing
beam lifetime

D. Robin et al. PRI. 2000
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g S
P

'S, Experimental Method; @

0 Study the resonance behavior around different working points in SPS

O Strength of individual resonance lines can be identified from the beam
loss rate, i.e. the derivative of the beam intensity at the moment of
crossing the resonance

1 Vertical tune is scanned from about 0.45 down to 0.05 during a period of
3s along the flat bottom

2 Low intensity 4-5e10 p /b single bunches with small emittance injected
2 Horizontal tune is constant during the same period

2 Tunes are continuously monitored using tune monitor (tune post-
processed with NAFF) and the beam intensity is recorded with a beam
current transformer

«q. Time: 2011/05/20 12:02:55 User: SPS.USER.MD1 SC: 3804 #Acquisitions: 376 sampling time: 10ms

@2DH+V O H:2D+ spectrum O V:2D + spectrum
Ampl cut -1.00 / Set 50 - MD1-SC3804_20May11_12-02-55

200+

100+

Non-linear dynamics, JUAS, January 2013




)

 Resonances in low vy, optics W Resonances in the nominal optics

Normal sextupole Qx+2Qy is Normal sextupole resonance Qx+2Qy 1s the

the strongest strongest

Skew sextupole 2Qx+Qy Coupling resonance (diagonal, either Qx-Qy
or some higher order of this), Qx-2Qy normal

quite strong sextupole

Normal sextupole Qx-2Qy,
skew sextupole at 3Qy and

2Q.X+2Qy fourth order Stop-band width of the vertical integer is
visible stronger (predicted by simulations)

Low Y, optics

Skew sextupole resonance 2Qx+Qy weak
compared to Q20 case

Nominal Optics
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