

Non-linear imperfections

Yannis PAPAPHILIPPOU Accelerator and Beam Physics group Beams Department CERN

Joint University Accelerator School

Archamps, FRANCE 23-25 January 2013

- O. Bruning, Non-linear dynamics, JUAS courses, 2006.
- O. Bruning, Non-linear imperfections, CERN Accelerator School Intermediate level, courses, 2009.
- M. Tabor, Chaos and Integrability in Nonlinear Dynamics, An Introduction, Willey, 1989.
- H. Wiedemann, Particle accelerator physics, 3rd edition, Springer 2007

- Oscillators and resonance condition
- Field imperfections and normalized field errors
- Perturbation treatment for a sextupole
- Poincaré section
- Chaotic motion
- Octupole effect and fringe fields
- Singe-particle diffusion
 - Dynamic aperture
 - □ Frequency maps

Damped harmonic oscillator:

$$\frac{d^2u(t)}{dt^2} + \frac{\omega_0}{Q}\frac{du(t)}{dt} + \omega_0^2u(t) = 0$$

 $\Box Q = \frac{1}{2\zeta}$ is the ratio between the stored and lost energy per cycle with ζ the damping ratio

 $\Box \omega_0$ is the eigen-frequency of the harmonic oscillator

$$u(t) = u_0 e^{\lambda t}$$

leading to an auxiliary 2nd order equation

$$\lambda^{2} + \frac{\omega_{0}}{Q}\lambda + \omega_{0}^{2} = 0 \text{ with solutions}$$
$$\lambda_{\pm} = -\frac{\omega_{0}}{2Q}(-1 \pm \sqrt{1 - 4Q^{2}}) = -\omega_{0}\zeta(-1 \pm \sqrt{1 - \frac{1}{\zeta^{2}}})$$

Harmonic oscillator including damping II

Three cases can be distinguished

- □ Overdamping (λ real, i.e. $\zeta > 1$ or Q < 1/2): The system exponentially decays to equilibrium (slower for larger damping ratio values)
- □ *Critical damping* ($\zeta = 1$): The system returns to equilibrium as quickly as possible without oscillating.
- □ *Underdamping* (λ complex, i.e. $\zeta < 1$ or Q > 1/2): The system oscillates with the amplitude gradually decreasing to zero, with a slightly different frequency than the *harmonic* one:

Damped oscillator with periodic driving

Consider periodic force pumping energy into the system $\frac{d^2u(t)}{dt} = \frac{\omega_0 du(t)}{dt} = \frac{F}{2}$

$$\frac{d^2u(t)}{dt^2} + \frac{\omega_0}{Q}\frac{du(t)}{dt} + \omega_0^2 u(t) = \frac{F}{m}\cos(\omega t)$$

General solution is a combination of a transient and a steady state term

$$u(t) = u_t(t) + u_s(t)$$

The transient solution corresponds to the one of the homogeneous system (damped oscillator) and "dies" out after some time leaving only the steady state one

$$u_s(t) = U(\omega)\cos(\omega t + \phi(\omega))$$

 $\Box \ \omega$ the frequency of the driven oscillation

Amplitude $U(\omega)$ can become large for certain frequencies

excitation by strong wind on the eigenfrequencies

Accelerator performance parameter

 $L = \frac{N_b^2 k_b \gamma}{4\pi\epsilon_{\perp}\beta^*}$

 $\bar{P} = \bar{I}E = f_N NeE$

 $=\frac{N_p}{4\pi^2\epsilon_x\epsilon_y}$

Colliders

□ Luminosity (i.e. rate of particle production)

- N_b bunch population
- k_b number of bunches
- γ relativistic reduced energy
- ε_n normalized emittance
- β * "betatron" amplitude function at collision point

High intensity accelerators

\Box Average beam power

- Tmean current intensity
- *E* energy
- f_N repetition rate
- *N* number of particles/pulse
- Synchrotron light sources
 - □ Brightness (photon density in phase space)
 - *N_p* number of photons
 - $\mathcal{E}_{x,y}$ transverse emittances

Performance issues due to non-linear effects

□ Reduced dynamic aperture, lifetime and availability, beam loss (radio-activation, magnet quench

Recall that
$$u(s) = \sqrt{\epsilon\beta(s)}\cos(\psi(s) + \psi_0)$$

 $u'(s) = \sqrt{\frac{\epsilon}{\beta(s)}}(\sin(\psi(s) + \psi_0) + \alpha(s)\cos(\psi(s) + \psi_0))$
Introduce new variables
 $\mathcal{U} = \frac{u}{\sqrt{\beta}}, \quad \mathcal{U}' = \frac{d\mathcal{U}}{d\phi} = \frac{\alpha}{\sqrt{\beta}}u + \sqrt{\beta}u', \quad \phi = \frac{\psi}{\nu} = \frac{1}{\nu}\int \frac{ds}{\beta(s)}$
In matrix form $\begin{pmatrix} \mathcal{U} \\ \mathcal{U}' \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{\beta}} & 0 \\ \frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta} \end{pmatrix} \begin{pmatrix} u \\ u' \end{pmatrix}$
Hill's equation becomes $\frac{d^2\mathcal{U}}{d\phi^2} + \nu^2\mathcal{U} = 0$
System becomes harmonic oscillator with frequency
 $\begin{pmatrix} \mathcal{U} \\ \mathcal{U}' \end{pmatrix} = \sqrt{\epsilon} \begin{pmatrix} \cos(\nu\phi) \\ -\sin(\nu\phi) \end{pmatrix} \quad \text{or} \quad \mathcal{U}^2 + {\mathcal{U}'}^2 = \epsilon$
Floquet transformation transforms phase space in circles

Perturbation in Hill's equations

Hill's equations in normalized coordinates with harmonic perturbation, using $\mathcal{U} = \mathcal{U}_x$ or \mathcal{U}_y and $\phi = \phi_x$ or ϕ_y $\frac{d^2 \mathcal{U}}{d\phi^2} + \nu^2 \mathcal{U} = \nu^2 \beta^{3/2} F(\mathcal{U}_x(\phi_x), \mathcal{U}_y(\phi_y))$

where the *F* is the Lorentz force from perturbing fields

- Linear magnet imperfections: deviation from the design dipole and quadrupole fields due to powering and alignment errors
- Time varying fields: feedback systems (damper) and wake fields due to collective effects (wall currents)
- Non-linear magnets: sextupole magnets for chromaticity correction and octupole magnets for Landau damping
- **Beam-beam interactions**: strongly non-linear field
- **Space charge effects**: very important for high intensity beams
- non-linear magnetic field imperfections: particularly difficult to control for super conducting magnets where the field quality is entirely determined by the coil winding accuracy

Magnetic multipole expansion

From Gauss law of magnetostatics, a vector potential exist

$$7 \cdot \mathbf{B} = \mathbf{0} \rightarrow \exists \mathbf{A} : \mathbf{B} = \nabla \times \mathbf{A}$$

Assuming a 2D field in x and y, the vector potential has only one component A_s . The Ampere's law in vacuum (inside the beam pipe)

$$\nabla \times \mathbf{B} = 0 \quad \rightarrow \quad \exists V : \quad \mathbf{B} = -\nabla V$$

Using the previous equations, the relations between field components and potentials are

$$B_x = -\frac{\partial V}{\partial x} = \frac{\partial A_s}{\partial y}, \quad B_y = -\frac{\partial V}{\partial y} = -\frac{\partial A_s}{\partial x}$$

i.e. Riemann conditions of an analytic function
There exist a complex potential of $z = x + iy$ with a power series expansion convergent in a circle with radius $|z| = r_c$ (distance from iron yoke)
 $\mathcal{A}(x + iy) = A_s(x, y) + iV(x, y) = \sum_{n=1}^{\infty} \kappa_n z^n = \sum_{n=1}^{\infty} (\lambda_n + i\mu_n)(x + iy)^n$ 11

1

Multipole expansion II

From the complex potential we can derive the fields

$$B_{y} + iB_{x} = -\frac{\partial}{\partial x}(A_{s}(x, y) + iV(x, y)) = -\sum_{n=1}^{\infty} n(\lambda_{n} + i\mu_{n})(x + iy)^{n-1}$$
Setting $b_{n} = -n\lambda_{n}$, $a_{n} = n\mu_{n}$

$$B_{y} + iB_{x} = \sum_{n=1}^{\infty} (b_{n} - ia_{n})(x + iy)^{n-1}$$
Define normalized coefficients
 $b'_{n} = \frac{b_{n}}{10^{-4}B_{0}}r_{0}^{n-1}$, $a'_{n} = \frac{a_{n}}{10^{-4}B_{0}}r_{0}^{n-1}$
on a reference radius $r_{0'}$ 10⁴ of the main field to get
 $B_{y} + iB_{x} = 10^{-4}B_{0}\sum_{n=1}^{\infty} (b'_{n} - ia'_{n})(\frac{x + iy}{r_{0}})^{n-1}$
Note: $n' = n - 1$ is the US convention

12

Hill's equations in normalized coordinates with single dipole perturbation:

$$\frac{d^2\mathcal{U}}{d\phi^2} + \nu_0^2\mathcal{U} = \nu_0^2\beta^{3/2}b_1(\phi) = \overline{b_1}(\phi)$$

The dipole perturbation is periodic, so it can be expanded in a Fourier series ∞

$$\overline{b_1}(\phi) = \sum_{m = -\infty} \overline{b_{1m}} e^{im\phi}$$

■ Note that a periodic kick introduces infinite number of integer driving frequencies

The resonance condition occurs when

i.e. **integer tunes** should be avoided (remember orbit distortion due to single dipole kick)

Perturbation by single quadrupole

Consider single quadrupole kick in one normalized plane: $\frac{d^2\mathcal{U}}{d\phi^2} + \nu_0^2\mathcal{U} = \nu_0^2\beta^2 b_2(\phi)\mathcal{U} = \overline{b_2}(\phi)\mathcal{U}$

The quadrupole perturbation is periodic, so it can be expanded in a Fourier series $\overline{b_2}(\phi) = \sum \overline{b_{2m}} e^{im\phi}$

As the perturbation is small insert on the right hand side the unperturbed solution $\mathcal{U} \approx \mathcal{U}_0 = W_1 e^{i\nu_0\phi} + W_{-1} e^{-i\nu_0\phi}$ and the equation of motion can be written as

$$\frac{d^2\mathcal{U}}{d\phi^2} + \nu_0^2\mathcal{U} = \sum_{q=-1}^1 \sum_{m=-\infty}^\infty W_q \overline{b_{2m}} e^{i(m+q\nu_0)\phi} \quad \text{with} \quad W_0 = 0$$

The resonance conditions are $m - \nu_0 = \nu_0 \to \nu_0 = \frac{m}{2}$

i.e. integer and half-integer tunes should be avoided

The condition $m + \nu_0 = \nu_0 \rightarrow m = 0$ corresponds to a nonvanishing average value $\overline{b_{20}}$, which can be absorbed in the left-hand side providing a **tune-shift**: $\nu^2 = \nu_0^2 - b_{20}$ or $\delta\nu \approx -\frac{b_{20}}{2\nu_0}$ 14 Perturbation by single multi-pole

15

For a generalized multi-pole perturbation, Hill's equation is: $\frac{d^2 \mathcal{U}}{d\phi^2} + \nu_0^2 \mathcal{U} = \nu_0^2 \beta^{\frac{n}{2}+1} b_n(\phi) \mathcal{U}^{n-1} = \overline{b_n}(\phi) \mathcal{U}^{n-1}$ As before, the multipole coefficient can be expanded in Fourier series $\overline{b_n}(\phi) = \sum \overline{b_{nm}} e^{im\phi}$ As before, we insert the unperturbed solution on the right side and $\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^$ $\mathcal{U}^{n-1} \approx \mathcal{U}_0^{n-1} = \sum W_q e^{iq\nu_0\phi}$ the equation of motion can be written as $\frac{d^2 \mathcal{U}}{d\phi^2} + \nu_0^2 \mathcal{U} = \sum^{n-1} \sum^{m-1} W_q \overline{b_{nm}} e^{i(m+q\nu_0)\phi}$ $q = -n + 1 m = -\infty$ with $W_{n-2} = W_{n-4} = \cdots = W_{-n+2} = 0$ The resonance conditions are $m + q\nu_0 = \nu_0$ with $q = -n + 1, -n + 3, \dots, n - 1$ If q=1 does not correspond to a vanishing coefficient (even multipoles), there is an (amplitude dependent, for n>2) frequency shift

Single Sextupole Perturbation

Consider a localized sextupole perturbation in the horizontal plane $\frac{d^2 \mathcal{U}}{d\phi^2} + \nu_0^2 \mathcal{U} = \nu_0^2 \beta^{\frac{5}{2}} b_3(\phi) \mathcal{U}^2 = \overline{b_3}(\phi) \mathcal{U}^2$

After replacing the perturbation by its Fourier transform and inserting the unperturbed solution to the right hand side

$$\frac{d^2\mathcal{U}}{d\phi^2} + \nu_0^2\mathcal{U} = \sum_{q=-2}^2 \sum_{m=-\infty}^\infty W_q \overline{b_{3m}} e^{i(m+q\nu_0)\phi} \quad \text{with} \quad W_1 = W_{-1} = 0$$

$$\mathbf{3^{rd} integer} \rightarrow 3\nu_0 = m \text{ for } q = -2$$

Resonance conditions:

integer $\rightarrow \nu_0 = m$ for q = 0, 2

■ Note that there is not a tune-spread associated. This is only true for small perturbations (first order perturbation treatment)

- No exact solution
- Need numerical tools to integrate equations of motion

General resonance conditions

17

Equations of motion including any multi-pole error $\frac{d^2 \mathcal{U}_x}{d\phi_x^2} + \nu_{0x}^2 \mathcal{U}_x = \overline{b_{n,r}}(\phi_x) \mathcal{U}_x^{n-1} \mathcal{U}_y^{r-1}$ Expanding perturbation coefficient in Fourier series and inserting the solution of the unperturbed system gives the following series: $\overline{b_{nr}}(\phi_x) = \sum_{m=-\infty}^{\infty} \overline{b_{nrm}} e^{im\phi_x} \quad \mathcal{U}_x^{n-1} \approx \mathcal{U}_{0x}^{n-1} = \sum_{q_x=-n+1}^{n-1} W_{q_x}^x e^{iq_x\nu_{0x}\phi_x} \quad \mathcal{U}_y^{r-1} \approx \mathcal{U}_{0y}^{r-1} = \sum_{q_x=-n+1}^{r-1} W_{q_y}^y e^{iq_y\nu_{0y}\phi_x}$ The equation of motion becomes $\frac{d^2 \mathcal{U}_x}{d\phi_x^2} + \nu_{0x}^2 \mathcal{U}_x = \sum \overline{b_{nrm}} W_{q_x}^x W_{q_y}^y e^{i(m+q_x\nu_{0x}+q_y\nu_{0y})\phi_x}$ m,q_x,q_u **Resonance conditions** 0.8 $m + q_x \nu_{0x} + q_y \nu_{0y} = \nu_{0x}$ 0.6 or $m + q'_x \nu_{0x} + q_y \nu_{0y} = 0$ 0.4 0.2 with the resonance order $|q_x| + |q_y| + 1$ 0 0 0.2 0.4 0.8 There are resonance lines everywhere !!! 0.6

Example: Linear Coupling

For a localized skew quadrupole we have

$$\frac{d^2 \mathcal{U}_x}{d\phi_x^2} + \nu_{0x}^2 \mathcal{U}_x = \overline{b_{1,2}}(\phi_x)\mathcal{U}_y$$

Expanding perturbation coefficient in Fourier series and inserting the solution of the unperturbed system gives the following equation:

$$\frac{d^2 \mathcal{U}_x}{d\phi_x^2} + \nu_{0x}^2 \mathcal{U}_x = \sum_{m=-\infty}^{\infty} \sum_{q_y=-1}^{q_y=1} \overline{b_{12m}} W_{q_y}^y e^{i(m+q_y\nu_{0y})\phi_x} \text{with } W_0^y = 0$$

The coupling resonance are found for $\, q_y = \pm 1 \,$

Linear sum resonance

$$m = \nu_{0x} + \nu_{0y}$$

Linear difference resonance

$$m = \nu_{0x} - \nu_{0y}$$

Regions with few resonances: $m + q_x \nu_{0x} + q_y \nu_{0y} = 0$ Avoid low order resonances \sim < 12th order for a proton beam without damping $\blacksquare < 3^{rd} \Leftrightarrow 5^{th}$ order for electron beams with damping Close to coupling resonances: regions without low order resonances but relatively small!

Poincaré Section

Topology of a sextupole resonance

 Small amplitude, regular motion (circles)

Larger amplitude deformation of phase space towards a triangular shape

Separatrix: curve passing through unstable (hyperbolic) fixed points (and going to infinity)

■ Its location (width) depends on distance to the resonance of the unperturbed tune

Exactly on the resonance, sepratrix collapses to a single unstable fixed point (bifurcation)

Stable fixed points should exist but they are found in much larger amplitudes

Path to chaos

■ When perturbation becomes higher, motion around the separatrix becomes chaotic (producing tongues or splitting of the separatrix)

Unstable fixed points are indeed the source of chaos when a perturbation is added

Topology of an octupole resonance

Regular motion near the center, with curves getting more deformed towards a rectangular shape

The separatrix passes through 4 unstable fixed points, but motion seems well contained

Four stable fixed points exist and they are surrounded by stable motion (islands of stability)

Chaotic motion

Poincare-Birkhoff theorem states that under perturbation of a resonance only an even number of fixed points survives (half stable and the other half unstable)

Themselves get destroyed when perturbation gets higher, etc. (self-similar fixed points)

Resonance islands grow and resonances can overlap allowing diffusion of particles

septum diffusing through the separatrix

Sextupole effects up to 2nd

- 9 first order terms:
 - 2 chromaticities ξ_x, ξ_y
 - 2 off-momentum resonances $2Q_x$, $2Q_y \rightarrow d\beta/d\delta \rightarrow \xi^{(2)} = \partial^2 Q/\partial\delta^2$
 - 2 terms \rightarrow integer resonances Q_x
 - 1 term $\rightarrow 3^{rd}$ integer resonances $3Q_x$
 - 2 terms \rightarrow coupling resonances $Q_x \pm 2Q_y$

13 second order terms:

- 3 tune shifts with amplitude: $\partial Q_x / \partial J_x$, $\partial Q_x / \partial J_y = \partial Q_y / \partial J_x$, $\partial Q_y / \partial J_y$
- 8 terms \rightarrow octupole like resonances: $4Q_x$, $2Q_x \pm 2Q_y$, $4Q_y$, $2Q_x$, $2Q_y$
- 2 second order chromaticities: $\partial^2 Q_x / \partial \delta^2$ and $\partial^2 Q_y / \partial \delta^2$

Enough sextupole families are needed to control all these terms

Optimization of Dynamic aperture

Keep chromaticity sextupole strength low

Try an interleaved sextupole scheme (-*I* transformer) to cancel first order third resonance effect

- Choose working point far from systematic resonances
- Iterate between linear and non-linear lattice

Y [mm]

Non-linear dynamics, JUAS, January 2013

27

- Up to now we considered only transverse fields
- Magnet fringe field is the longitudinal dependence of the field at the magnet edges
- Important when magnet aspect ratios and/or emittances are big

30

Z (cm)

40

50

10

20

60

Quadrupole fringe field

General field expansion for a quadrupole magnet:

$$B_x = \sum_{m,n=0}^{\infty} \sum_{l=0}^{m} \frac{(-1)^m x^{2n} y^{2m+1}}{(2n)!(2m+1)!} \binom{m}{l} b_{2n+2m+1-2l}^{[2l]}$$

$$B_y = \sum_{m,n=0}^{\infty} \sum_{l=0}^{m} \frac{(-1)^m x^{2n+1} y^{2m}}{(2n+1)! (2m)!} {m \choose l} b_{2n+2m+1-2l}^{[2l]}$$

$$B_z = \sum_{m,n=0}^{\infty} \sum_{l=0}^{m} \frac{(-1)^m x^{2n+1} y^{2m+1}}{(2n+1)! (2m+1)!} {m \choose l} b_{2n+2m+1-2l}^{[2l+1]}$$

and to leading order

$$B_x = y \left[b_1 - \frac{1}{12} (3x^2 + y^2) b_1^{[2]} \right] + O(5)$$

$$B_y = x \left[b_1 - \frac{1}{12} (3y^2 + x^2) b_1^{[2]} \right] + O(5)$$

$$B_z = xy b_1^{[1]} + O(4)$$

The quadrupole fringe to leading order has an octupole-like effect²⁹

First order tune spread for an octupole:

$$\begin{pmatrix} \delta\nu_x\\ \delta\nu_y \end{pmatrix} = \begin{pmatrix} a_{hh} & a_{hv}\\ a_{hv} & a_{vv} \end{pmatrix} \begin{pmatrix} 2J_x\\ 2J_y \end{pmatrix},$$

where the normalized anharmonicities are

$$a_{hh} = \frac{-1}{16\pi B\rho} \sum_{i} \pm Q_{i}\beta_{xi}\alpha_{xi},$$

$$a_{hv} = \frac{1}{16\pi B\rho} \sum_{i} \pm Q_{i}(\beta_{xi}\alpha_{yi} - \beta_{yi}\alpha_{xi}),$$

$$a_{vv} = \frac{1}{16\pi B\rho} \sum_{i} \pm Q_{i}\beta_{yi}\alpha_{yi}.$$

$$\sum_{5.84} Q_{v}$$

Tune footprint for the SNS based on hardedge (red) and realistic (blue) quadrupole fringe-field

Frequency map analysis

Quasi-periodic approximation through **NAFF** algorithm

$$f'_j(t) = \sum_{k=1}^N a_{j,k} e^{i\omega_{j,k}t}$$

ΛΤ

of a complex phase space function $f_j(t) = q_j(t) + ip_j(t)$ defined over $t = \tau$,

for each degree of freedom $j=1,\ldots,n$ with $\omega_{j,k}=k_j\cdot\omega$ and $a_{j,k}=A_{j,k}e^{i\phi_{j,k}}$

Advantages of NAFF:

a) Very accurate representation of the "signal" $f_j(t)$ (if quasi-periodic) and thus of the amplitudes

b) Determination of frequency vector $\boldsymbol{\omega} = 2\pi \boldsymbol{\nu} = 2\pi (\nu_1, \nu_2, \dots, \nu_n)$ with high precision $\frac{1}{\tau^4}$ for Hanning Filter

Building the frequency map

32

- Choose coordinates (x_i, y_i) with p_x and $p_y=0$
- Numerically integrate the phase trajectories through the lattice for sufficient number of turns
- Compute through NAFF Q_x and Q_y after sufficient number of turns
- Plot them in the tune diagram

Frequency maps for the LHC

Y. Papaphilippou, PAC1999

Frequency maps for the target error table (left) and an increased random skew octupole error in the super-conducting dipoles (right) 33

Calculate frequencies for two equal and successive time spans and compute frequency diffusion vector:

$$D|_{t= au} =
u|_{t\in(0, au/2]} -
u|_{t\in(au/2, au]}$$

Plot the initial condition space color-coded with the norm of the diffusion vector

Compute a diffusion quality factor by averaging all diffusion coefficients normalized with the initial conditions radius

$$D_{QF} = \left\langle \begin{array}{c} |D| \\ (I_{x0}^2 + I_{y0}^2)^{1/2} \end{array} \right\rangle_R$$

Y. Papaphilippou, PAC1999

Diffusion maps for the target error table (left) and an increased random skew octupole error in the super-conducting dipoles (right)

Non-linear dynamics, JUAS, January 2013

Frequency Map for the ESRF

Example for the SNS ring: Working point (6.4,6.3)

- Integrate a large number of particles
- Calculate the tune with refined Fourier analysis
- Plot points to tune space SNS Working Point (Q_x,Q_y)=(6.4,6.3)

Working Point Comparison

Tune Diffusion quality factor $D_{QF} = \langle \frac{|D|}{(I_{x0}^2 + I_{y0}^2)^{1/2}} \rangle_R$

Working point comparison (no sextupoles)

Beam-Beam interaction

Variable	Symbol	Value
Beam energy	E	7 TeV
Particle species		protons
Full crossing angle	$ heta_{c}$	$300 \ \mu rad$
rms beam divergence	σ'_x	31.7 μ rad
rms beam size	σ_x	15.9 μm
Normalized transv.		·
rms emittance	$\gamma \varepsilon$	3.75 µm
IP beta function	$oldsymbol{eta}^*$	0.5 m
Bunch charge	N_b	$(1 \times 10^{11} - 2 \times 10^{12})$
Betatron tune	Q_0	0.31

Long range beam-beam interaction represented by a 4D kick-map

$$\Delta x = -n_{par} \frac{2r_p N_b}{\gamma} \left[\frac{x' + \theta_c}{\theta_t^2} \left(1 - e^{-\frac{\theta_t^2}{2\theta_{x,y}^2}} \right) - \frac{1}{\theta_c} \left(1 - e^{-\frac{\theta_c^2}{2\theta_{x,y}^2}} \right) \right]$$
$$\Delta y = -n_{par} \frac{2r_p N_b}{\gamma} \frac{y'}{\theta_t^2} \left(1 - e^{-\frac{\theta_t^2}{2\theta_{x,y}^2}} \right)$$
with $\theta_t \equiv \left((x' + \theta_c)^2 + {y'}^2 \right)^{1/2}$

Head-on vs Long range interaction

YP and F. Zimmermann, PRSTAB 1999, 2002

- Proved dominant effect of long range beam-beam effect
- Dynamic Aperture (around 6σ) located at the folding of the map (indefinite torsion)
- Dynamics dominated by the 1/r part of the force, reproduced by electrical wire, which was proposed for correcting the effect
 Experimental verification in SPS and installation to the LHC IPs

CLIC Damping ring dynamics

E. Levichev et al. PAC2009

Including radiation damping and excitation shows that 0.7% of the particles are lost during the damping Certain particles seem to damp away from the beam core, on resonance islands

Experimental frequency map

D. Robin et al. PRL 2000

- Frequency analysis of turn-by-turn data of beam oscillations produced by a fast kicker magnet and recorded on a Beam Position Monitors
- Reproduction of the non-linear model of the Advanced Light Source storage ring and working point optimization for increasing beam lifetime

- □ Study the resonance behavior around different working points in SPS
- Strength of individual resonance lines can be identified from the beam loss rate, i.e. the derivative of the beam intensity at the moment of crossing the resonance
- Vertical tune is scanned from about 0.45 down to 0.05 during a period of 3s along the flat bottom
- □ Low intensity 4-5e10 p/b single bunches with small emittance injected
- Horizontal tune is constant during the same period
- Tunes are continuously monitored using tune monitor (tune postprocessed with NAFF) and the beam intensity is recorded with a beam current transformer

Tune Scans – Results from the SPS

\Box Resonances in low γ_t optics

- Normal sextupole Qx+2Qy is the strongest
- Skew sextupole 2Qx+Qy quite strong
- Normal sextupole Qx-2Qy, skew sextupole at 3Qy and 2Qx+2Qy fourth order visible

Resonances in the nominal optics

- Normal sextupole resonance Qx+2Qy is the strongest
- Coupling resonance (diagonal, either Qx-Qy or some higher order of this), Qx-2Qy normal sextupole
- Skew sextupole resonance 2Qx+Qy weak compared to Q20 case
- Stop-band width of the vertical integer is stronger (predicted by simulations)

