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The Fir:
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At the heart of the nebula 1s a rapidly-spinning neutron star, a

The Crab nebula 1s the
expanding remains of a
star that was seen to
explode by Chinese

astronomers 1n the year
1054AD.

pulsar, and 1t powers the strongly polarised bluish

'synchrotron' nebula.
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18 Nobel Prizes
Based on X-ray
Work

Chemistry
1936:. Peter Debye

1962: Max Purutz and Sir John
Kendraw

1976 William Lipscomb

1985 Herbert Hauptman and Jerome
Karle

1988 Johann Deisenhofer, Robert
Huber and Hartmut Michel

1997 Paul D. Boyer and John E.
Walker

2003 Peter Agre and Roderick
Mackinnon

Fernando Sannibale, USPAS, Jan 2006
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Physics

1901 Wilhem Rontgen

1914 Max von Laue

1915 Sir William Bragg and son
1917 Charles Barkla

1924 Karl Siegbahm

1927 Arthur Compton

1981 Kai Siegbahn

Medicine
1946 Hermann Muller

1962 Frances Crick, James Watson
and Maurice Wilkins

1979 Alan Cormack and Godrey
Hounsfield
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B 15t Generation SR sources

B Electron synchrotrons start to be built for high energy
physics use (rapidly cycling accelerators not Storage Rings!)

B Interest from other physicists in using the “waste” SR
B Lirst users are parasitic

at Daresbury constructed
in 1966/67 by Manchester
University

- * .Eg‘;'-" = The first beamline on NINA

NINA was a 6GeV electron
synchrotron devoted to the
study of particle physics
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B 2nd Generation SR sources

B Purpose built accelerators start to be built — late 70’s
B First users ~1980 (at SRS, Daresbury)
B Based primarily upon bending magnet radiation

The VUV ring at Brookhaven
in 1980 before the beamlines
are fitted

Not much room for undulators!

Physics of Synchrotron Radiation, USPAS, January 2008




A Brief History « 0

B 3'd Generation SR sources

B Primary light source is the
undulator ESRF, Grenoble

B First built in the late
80’s/early 90’s

B First users ~1994
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A Brief History o !%

B 4th Generation SR sources

B Primary light source is the single pass Free Electron
Laser

B First built ~2000
B First users ~2006

....
)

FLASH FEL facility at
DESY
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B X-ray tubes (early 20t
century)
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B 15t generation: originally
build for high-energy physics © j
experiments and synchrotron e e
radiation programs used
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Accelerate electrons up to a few GeV in a few msec
in the booster synchrotron and transfer them
into the storage ring LL R

-

N
=

Produce electron in a thermionic gun,
accelerate them up to a few MeV in a linac
and transfer them into a booster
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Electrons are getting
accumulated up to a
high current (a few
hundred mA) in the
storage ring and they
circulate freely
producing synchrotron

radiation
Storage ring

A beamline

Procedure repeated
periodically,
depending on the beam

lifetime .



O] A typical
B The first and most brilliant 37
generation light source in Europe

B 50 beam lines collecting X-rays from
insertion devices and bending
magnets

B 3500 users/year from 14 member
countries carrying X-ray spectroscopy

experiments for material science, A il
chemistry, biology, medicine, earth N, ———w

1D26

sciences, archeology, etc.

B The machine comprises an e" linac, a
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300m-booster and an 844m-storage }

. AR © £
ring \ il
B The storage ring has a record >\ 7R

availability of 98% with a mean-time = _ ° w0 57
between failures of more than 2 days
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ESRF pa I
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Energy GeV 6.03
Maximum Current mA 200
Horizontal Emittance nm 4

Vertical Emittance (*minimum achieved) nm 0.025 (0.010%*)

Coupling (*minimum achieved) % 0.6 (0.25%)
Revolution frequency kHz 355
Number of bunches 1 to 992

Time between bunches ns 2816to 2.82

13



Why circ m’rs

@ — P =myVv v <<

2

2
P L € dp Larmor Power radiated by non-
s — 67'('5() m (2) o3 At relativistic particles is very small

@ P = YmoV VR C
§ 2 d 2
S P — € 1% Power radiated by relativistic
-+ s 2 3\ g4 particle in linear accelerator is
: bme 01MyC dt negligible
% X ,’i
j”% 2 C E4 Power radiated by relativistic
< P. = € particle in circular accelerator is
g S 6 2\4 A2 very strong
2 meo(moc?)?t p y



Physics of Synchrotron Radiation, USPAS, January 2008

i

Lienard’s

B “Flectric and
Magnetic Field
produced by an
electric charge
concentrated at a point
and travelling on an

arbitrary path”
Prophetically published in

the french journal “The
Electric Light”
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From L. Rivkin, CAS2003
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AE = — °©

3e0(moc?)? p

For electrons:

AE[keV] = 88.5

E4[GeV?

plm]

i

Power inversely proportional to
4t power of rest mass (proton
2000 times heavier than electron)
On the other hand, for multi TeV
hadron colliders (LHC)
synchrotron radiation is an
important issue (protection with
absorbers)

By integrating around one
revolution we get the energy loss
per turn. For the ESRF is around
5 MeV /turn. On the other hand,
for LEPII (120 GeV) it was

6GeV /turn, i.e. circular electron
machines of more than 100GeV
are not practical
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B Electron moving towards
. >

observer with normalized
velocity B emits wave with 0
period T, while observer

sees a different period T, B

1, = (1—7?/'/8)T€
B The wavelength becomes in the same way
Ao = (1 — BcosB) A,
B [ ooking along the tangzgent of the trajectory @ = () and by
1 =0 ~ 1 the wavelength is Ao = %
1+05 292 2y

B The emitted wavelength is compressed by a large factor

using 1 — 8 =
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: M Taking into account electrons of a few GeV, (y of a few 103)
:  with wavelengths of a few cm, provide radiation of a nm (X-

= rays) 18



Angular
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vV <<¢c
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B For a non-relativistic source (or in the
laboratory frame) radiation is axially
symmetric, proportional to sin? 6,
(Herz dipole)

B For relativistic source, the observed angle
with respect to the emission angle is

g sin 6.
anf, =
v(cos b, — )
1
W For small angles §, = —0,
Y

B The radiation is emitted into a narrow
cone, perpendicular to the electron
trajectory

i
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B Assume electrons moving in a ring of radius R

B Due to angle collimation, observer sees small fraction of
electron trajectory | = 2R/~

B The pulse length, defined as the time difference a photon
and electron to cover this distance

2R(1 —
a1 2R(1—0)

pe ¢ vpe
B Finally, the pulse length is

R

At ~ % /-\ -----

B This is a very short pulse \
(typically fraction of ns) \
and thus the radiation can P\
be produced with a time \

2 structure \
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Synch

B The radiation comes in a series of flushes with a (critical or
characteristic) frequency proportional to the revolution frequency

3
We ~ "y w 0)
B This is almost a continuous spectrum, as the harmonics are so high
that they overlap
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Intensity

Bending magnet

Multipole wiggler

Undulator

Photon energy

i
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Insertion devices

Undulator (K<1)
Produces a very narrow beam of
coherent light

i

Bending magnet (Sweeping searchlight)
At each deflection of the electron path a
beam of radiation is produced.

Undulator / wiggler peflection angle
parameter

)\ueé

trajectory

Wiggler (K>1)

Beams emitted at each pole reinforce each
other and appear as a broad beam of
incoherent light.

22
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1 I .
> .2, Photon beam divergences 23
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