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Outline - part I
 Hill’s equations

 Derivation
 Harmonic oscillator

 Transport Matrices
 Matrix formalism
 Drift
 Thin lens
 Quadrupoles
 Dipoles

 Sector magnets
Rectangular magnets

 Doublet
 FODO

Particle motion in
circular accelerator

Coordinate system
Beam guidance

Dipoles
Beam focusing

Quadrupoles
Equations of motion
Multipole field
expansion



Tr
an

sv
er

se
 M

ot
io

n,
 U

SP
A

S,
 Ja

nu
ar

y 
20

08

3

Coordinate system
 Cartesian coordinates not useful to describe

motion in an accelerator

 Instead a system following an ideal path along
the accelerator is used (Frenet reference system)

 The ideal path is defined by

 The curvature vector is
  From Lorentz equation

Ideal path

Particle trajectory

ρ

x

y

s

x
y

φ
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Beam guidance
 Consider uniform magnetic field B in the direction perpendicular to

particle motion. From the ideal trajectory and after considering that
the transverse velocities vx<< vs,vy<<vs, the radius of curvature is

 The cyclotron or Larmor frequency

 We define the magnetic rigidity

 In more practical units

 For ions with charge multiplicity Z and atomic number A, the energy
per nucleon is
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Dipoles
 Consider an accelerator ring

for particles with energy E
with N dipoles of length L

 Bending angle

 Bending radius

 Integrated dipole strength

SNS ring dipole

 Comments:
 By choosing a dipole field, the dipole

length is imposed and vice versa
 The higher the field, shorter or smaller

number of dipoles can be used
 Ring circumference (cost) is

influenced by the field choice

B

θ ρ

L
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Beam focusing
 Consider a particle in the design orbit.

 In the horizontal plane, it performs harmonic oscillations

            with frequency

 The horizontal acceleration is described by

 There is a week focusing effect in the horizontal plane.

 In the vertical plane, the only force present is gravitation.
Particles are displaced vertically following the usual law

x

y

s

ρ

design orbit

 Setting ag = 10 m/s2, the
particle is displaced by
18mm (LHC dipole
aperture) in 60ms (a few
hundreds of turns in
LHC)

          Need of focusing!
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 Magnetic element that deflects the beam by an angle proportional to the
distance from its centre (equivalent to ray optics) provides focusing.

 The deflection angle is defined as           , for a lens of focal length f
and small displacements y.

 A magnetic element with length l and gradient g provides field
so that the deflection angle is

Focusing elements

   The normalised focusing strength
is defined as

   In more practical units, for Z=1

   The focal length becomes
and the deflection angle is

y
α

f

focal point

f -1
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Quadrupoles
 Quadrupoles are focusing in one plane and

defocusing in the other
 The field is
 The resulting force
 Need to alternate focusing and defocusing in

order to control the beam, i.e. alternating
gradient focusing

 From optics we know that a combination of two
lenses with focal lengths f1 and f2 separated by a
distance d

 If f1 = -f2, there is a net focusing effect, i.e.

v

F

B

F

Bv
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Magnetic multipole expansion
 From Gauss law of magnetostatics, a vector potential exist

 Assuming a 2D field in x and y, the vector potential has only one
component As. The Ampere’s law in vacuum (inside the beam pipe)

 Using the previous equations, the relations between field components
and potentials are

i.e. Riemann conditions of an analytic function

There exist a complex potential of z = x+iy with a
power series expansion convergent in a circle with
radius |z| = rc (distance from iron yoke)

x

y
iron

rc
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Multipole expansion II
 From the complex potential we can derive the fields

 Setting

 Define normalized coefficients 

on a reference radius r0, 10-4 of the main field to get

 Note: n’=n-1 is the US convention
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Magnet definitions
2n-pole:
         dipole   quadrupole   sextupole    octupole …

n:          1                 2                     3                    4    …

Normal: gap appears at the horizontal plane
Skew: rotate around beam axis by π/2n angle
Symmetry: rotating around beam axis by π/n angle,

the field is reversed (polarity flipped)

N

S

N

S

S

N
N

S S

S
N N N

N

N

N

S

S

S

S
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Equations of motion – Linear fields
 Consider s-dependent fields from dipoles and normal

quadrupoles
 The total momentum can be written
 With magnetic rigidity              and normalized gradient 

the equations of motion are

 Inhomogeneous equations with s-dependent coefficients
 Note that the term 1/ρ2 corresponds to the dipole week

focusing
 The term ΔP/(Pρ) represents off-momentum particles
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Hill’s equations
 Solutions are combination of the ones from the 

homogeneous and inhomogeneous equations
 Consider particles with the design momentum. 

The equations of motion become

with
  Hill’s equations of linear transverse particle motion
 Linear equations with s-dependent coefficients (harmonic

oscillator with time dependent frequency)
 In a ring (or in transport line with symmetries), coefficients

are periodic
 Not straightforward to derive analytical solutions for whole

accelerator

George Hill
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Harmonic oscillator – spring

u

u

 Consider K(s) = k0 = constant

 Equations of harmonic oscillator
with solution

with
for k0 > 0

for k0 < 0

 

 Note that the solution can be written in matrix form
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 General transfer matrix from s0 to s

 Note that 
which is always true for conservative systems

 Note also that

 The accelerator can be build by a series of matrix multiplications

from s0 to s1
from s0 to s2

from s0 to s3

from s0 to sn

Matrix formalism

…
S0

S1 S2 S3 Sn-1
Sn
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  System with mirror symmetry

Symmetric lines

S

  System with normal symmetry

S
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to get a total 4x4 matrix

4x4 Matrices
 Combine the matrices for each plane

Uncoupled motion
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Transfer matrix of a drift

 Consider a drift (no magnetic elements) of length L=s-s0

 Position changes if particle has a slope which remains unchanged.

0 L

u’

u

u’⋅L

s

L

Real Space Phase Space

Before

After
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u’

u

(De)focusing thin lens

u’

u

0 f

 Consider a lens with focal length ±f

 Slope diminishes (focusing) or increases
(defocusing) for positive position, which remains
unchanged.

After
Before

0 f

Before
After
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 Consider a quadrupole magnet of length L = s-s0.
The field is

 with normalized quadrupole gradient (in m-2)

The transport through a quadrupole is

u’

u

Quadrupole

0 L s
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 For a focusing quadrupole (k>0)

 For a defocusing quadrupole (k<0)

 By setting

 Note that the sign of k or f is now absorbed inside the symbol
 In the other plane, focusing becomes defocusing and vice

versa

(De)focusing Quadrupoles
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 Consider a dipole of (arc) length L.
 By setting  in the focusing quadrupole matrix the

transfer matrix for a sector dipole becomes

with a bending radius
 In the non-deflecting plane and

 This is a hard-edge model. In fact, there is some edge
focusing in the vertical plane

 Matrix generalized by adding gradient (synchrotron magnet)

Sector Dipole

θ

L
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 Consider a rectangular dipole with bending angle θ. At each edge of
length ΔL, the deflecting angle is changed by

i.e., it acts as a thin defocusing lens with focal length
 The transfer matrix is with

 For θ<<1, δ=θ/2
 In deflecting plane (like drift),          in non-deflecting plane (like sector)

Rectangular Dipole

θ

ΔL
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Quadrupole doublet

x

L

 Consider a quadrupole doublet,
i.e. two quadrupoles with focal
lengths f1 and f2 separated by a
distance L.

 In thin lens approximation the
transport matrix is

with the total focal length

 Setting f1 = - f2 = f
 Alternating gradient focusing seems overall focusing
 This is only valid in thin lens approximation
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FODO Cell
 Consider defocusing quad

“sandwiched” by two focusing
quads with focal lengths ± f.

 Symmetric transfer matrix from
center to center of focusing quads

with the transfer matrices

 The total transfer matrix is

L L
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Outline - part II
General solutions of

Hill’s equations
Floquet theory

Betatron functions
Transfer matrices

revisited
General and periodic cell

General transport of
betatron functions
Drift
Beam waist

Normalized coordinates

Off-momentum particles
Effect from dipoles and

quadrupoles
Dispersion equation
3x3 transfer matrices

Periodic lattices in circular
accelerators
 Periodic solutions for beta

function and dispersion
 Symmetric solution

Tune and Working point
Matching the optics
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Solution of Betatron equations
 Betatron equations are linear 

with periodic coefficients

 Floquet theorem states that the solutions are

where w(s), ψ(s) are periodic with the same period

 Note that solutions resemble the one of harmonic oscillator

 Substitute solution in Betatron equations

0 0
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Betatron functions
 By multiplying with w the coefficient of sin

 Integrate to get

 Replace ψ’ in the coefficient of cos and obtain

 Define the Betatron or twiss or lattice functions (Courant-
Snyder parameters)
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Betatron motion
 The on-momentum linear betatron motion of a particle is

described by

with  the twiss functions

the betatron phase

 By differentiation, we have that the angle is

    and the beta function is defined by the envelope equation
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Courant-Snyder invariant
 Eliminating the angles by the position and slope we define

the Courant-Snyder invariant

 This is an ellipse in phase space with area πε
 The twiss functions have a geometric meaning

 The beam envelope is

 The beam divergence
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General transfer matrix
 From equation for position and angle we have

 Expand the trigonometric formulas and set ψ(0)=0 to get
the transfer matrix from location 0 to s

with

and the phase advance
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Periodic transfer matrix
 Consider a periodic cell of length C
 The optics functions are

and the phase advance

 The transfer matrix is

 The cell matrix can be also written as

with    and the Twiss matrix
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Stability conditions
 From the periodic transport matrix

and the following stability criterion

 In a ring, the tune is defined from the 1-turn phase
advance

i.e. number betatron oscillations per turn
 From transfer matrix for a cell

we get
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Transport of Betatron functions
 For a general matrix between position 1 and 2

    and the inverse

 Equating the invariant at the two locations

and eliminating the transverse positions and angles
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Example I: Drift
Consider a drift with length s

 The transfer matrix is

 The betatron transport matrix is

from which

s

γ
β

α
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Simplified method for betatron transport

Consider the beta matrix         the matrix

and its transpose

 It can be shown that

Application in the case of the drift

and
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Example II: Beam waist
 For beam waist α=0 and occurs

at s = α0/γ0
 Beta function grows

quadratically and is minimum in
waist

s

γ
β

α
waist

 The beta at the waste for having beta minimum

in the middle of a drift with length L is

 The phase advance of a drift is

which is π/2 when               .  Thus, for a drift
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Effect of dipole on off-momentum particles
 Up to now all particles had the same momentum P0

 What happens for off-momentum particles, i.e. particles
with momentum P0+ΔP?

 Consider a dipole with field B and 
bending radius ρ

 Recall that the magnetic rigidity  is 
and for off-momentum particles

 Considering the effective length of the dipole  unchanged

 Off-momentum particles get different deflection (different
orbit)

θ

P0+ΔP

P0

ρ
ρ+δρ
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 Consider a quadrupole with gradient G
 Recall that the normalized gradient is

and for off-momentum particles

 Off-momentum particle gets different focusing

 This is equivalent to the effect of optical lenses on
light of different wavelengths

P0+ΔP
P0

Off-momentum particles and quadrupoles
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 Consider the equations of motion for off-momentum
particles

 The solution is a sum of the homogeneous equation (on-
momentum) and the inhomogeneous (off-momentum)

 In that way, the equations of motion are split in two parts

 The dispersion function can be defined as
 The dispersion equation is

Dispersion equation
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Dispersion solution for a bend
 Simple solution by considering motion through a sector

dipole with constant bending radius ρ

 The dispersion equation becomes

 The solution of the homogeneous is harmonic with
frequency 1/ρ

 A particular solution for the inhomogeneous is
and we get by replacing

 Setting D(0) = D0 and D’(0) = D0’, the solutions for
dispersion are
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General dispersion solution
 General solution possible with perturbation theory and use of Green

functions
 For a general matrix    the solution is

 One can verify that this solution indeed satisfies the differential
equation of the dispersion (and the sector bend)

 The general betatron solutions can
be obtained by 3X3 transfer
matrices including dispersion

 Recalling that

and
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 For drifts and quadrupoles which do not create
dispersion the 3x3 transfer matrices are just

 For the deflecting plane of a sector bend we have seen that
the matrix is

and in the non-deflecting plane is just a drift.

3x3 transfer matrices - Drift, quad and sector bend
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3x3 transfer matrices - Synchrotron magnet
 Synchrotron magnets have focusing and bending included

in their body.
 From the solution of the sector bend, by replacing 1/ρ with

 For K>0

 For K<0

with 
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3x3 transfer matrices - Rectangular magnet
 The end field of a rectangular magnet is simply the one of

a quadrupole. The transfer matrix for the edges is

 The transfer matrix for the body of the magnet is like for
the sector bend

 The total transfer matrix is
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Chromatic closed orbit
 Off-momentum particles are not oscillating around design

orbit, but around chromatic closed orbit
 Distance from the design orbit depends linearly with

momentum spread and dispersion

Design orbit
Design orbit

On-momentum
particle trajectory

Off-momentum
particle trajectory

Chromatic close orbit
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Periodic solutions
 Consider two points s0  and s1 for which the magnetic

structure is repeated.
 The optical function follow periodicity conditions

 The beta matrix at this point is
 Consider the transfer matrix from s0 to s1

 The solution for the optics functions is

with the condition
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Periodic solutions for dispersion
 Consider the 3x3 matrix for propagating

dispersion between s0 and s1

 Solve for the dispersion and its derivative to get

with the conditions
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Symmetric solutions
 Consider two points s0 and s1 for which the lattice is mirror

symmetric
 The optical function follow periodicity conditions

 The beta matrices at s0 and s1 are
 Considering the transfer matrix between s0 and s1

 The solution for the optics functions is

with the condition
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Symmetric solutions for dispersion
 Consider the 3x3 matrix for propagating

dispersion between s0 and s1

 Solve for the dispersion in the two locations

 Imposing certain values for beta and dispersion,
quadrupoles can be adjusted in order to get a
solution
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Periodic lattices’ stability criterion revisited
 Consider a general periodic structure of length 2L

which contains N cells. The transfer matrix can be
written as

 The periodic structure can be expressed as

with
 Note that because
 Note also that
 By using de Moivre’s formula

 We have the following general stability criterion
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3X3 FODO cell matrix
 Insert a sector dipole in between the quads and

consider θ=L/ρ<<1
 Now the transfer matrix is

which gives

and after multiplication
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General solution for the dispersion
 Introduce Floquet variables

 The Hill’s equations are written
 The solutions are the ones of an harmonic oscillator

 For the dispersion solution           , the
inhomogeneous equation in Floquet variables is written

 This is a forced harmonic oscillator with solution

 Note the resonance conditions for integer tunes!!!
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Tune and working point
 In a ring, the tune is defined from the 1-turn phase

advance

i.e. number betatron oscillations per turn
 Taking the average of the betatron tune around the

ring we have in smooth approximation

 Extremely useful formula for deriving scaling laws
 The position of the tunes in a diagram of horizontal

versus vertical  tune is called a working point
 The tunes are imposed by the choice of the

quadrupole strengths
 One should try to avoid resonance conditions
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Example: SNS Ring Tune Space

Tunability: 1 unit in
horizontal, 3 units in vertical
(2 units due to bump/chicane
perturbation)

– Structural resonances (up
to 4th order)
– All other resonances (up to
3rd order)

• Working points considered
• (6.30,5.80)  - Old
• (6.23,5.24)
• (6.23,6.20) - Nominal
• (6.40,6.30) - Alternative
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Matching the optics
 Optical function at the entrance and end of accelerator may be fixed (pre-

injector, or experiment upstream)
 Evolution of optical functions determined by magnets through transport

matrices
 Requirements for aperture constrain optics functions all along the

accelerator
 The procedure for choosing the quadrupole strengths in order to achieve

all optics function constraints is called matching of beam optics
 Solution is given by numerical simulations with dedicated programs

(MAD, TRANSPORT, SAD, BETA, BEAMOPTICS) through multi-variable
minimization algorithms

      magnet structure

k1         k2            k3             k4            k5    …   km
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