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B Cartesian coordinates not useful to describe
motion in an accelerator

B Instead a system following an ideal path along
the accelerator is used (Frenet reference system)

Particle trajectory (uX7 uy7 uz) — (HX’ uy7 uS)

eaa> d2 S
m The curvature vectoris k = T3
S

m From Lorentz equation

dp d*s , d*s 5
Sy MY g =M = —myvik = q|v x B|

B The ideal path is defined by k = —]% | UX x B
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B Consider uniform magnetic field B in the direction perpendicular to
particle motion. From the ideal trajectory and after considering that
the transverse velocities v,<< v,,v,<<v, the radius of curvature is

1 q
L __‘B 1 B
=1k = | L_,,ﬁEw |
2
B The cyclotron or Larmor frequency wj = ’ B’
Etot

B We define the magnetic rigidity |Bp| = —
q

B In more practical units |5 F); , [GeV] = 0.2998| Bp| [Tm]

B For ions with charge multiplicity Z and atomic number A, the energy
per nucleon is

BE:o:[GeV/u] = 0.2998= |pr[Tm]
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B Consider an accelerator ring SNS-Fing dinole
for particles with energﬁz E
with N dipoles of length L

27
B Bending angle § = —
5ans N

B Bending radius p = %

B Integrated dipole strength
21 BF

BL =
m Comments: . L ™

m By choosing a dipole field, the dipole \ K
length 1s imposed and vice versa N y

m The higher the field, shorter or smaller \ ’
number of dipoles can be used N ’

m Ring circumference (cost) 1s 7
influenced by the field choice y




] Beam I
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design orbit

Consider a particle in the design orbit.

In the horizontal plane, it performs harmonic oscillations

T = xg cos(wt + ¢) with frequency w = Us
. . . P d?z  d*x 1
The horizontal acceleration is described by = = ——=z
ds?  vidt? 0>

There is a week focusing effect in the horizontal plane.

In the vertical plane, the only force present is gravitation. 1
Particles are displaced vertically following the usual law Ay = 5% At?
Setting a, = 10 m/s? the y
particle is displaced by By (y) ideal orbit
18mm (LHC dipole B T
aperture) in 60ms (a few ,l ; - particle trajectory
hundreds of turns in —~
LHC) —£
_% X T F
= "B
Need of focusing! "}__ 4 )




Foc i

B Magnetic element that deflects the beam by an angle proportional to the
distance from its centre (equivalent to ray optics) provides focusing.

B The deflection angle is defined as o = — Y for alens of focal length f
and small displacements y. f

B A magnetic element with length [ and gradient g provides field B, = gy

m The focal length becomes f~! = k I
and the deflection angle is o« = —k y [

so that the deflection angle is -~
-~ 1Y
l q B l // q \l\ N\f; /’
== ——— = —
P 6E x T\@E.;qlly
m The normalised focusing strength -
. L ILT LT TEPETEIPETRIPETY £ v
, isdefinedas | L
§ k p— ig— y.< ................................
GE ) Lo
; m In more practical units, for Z=1 e
s - g[T/m] e
g klm™2] = 0.2998 2L 1 e
g | | BE[GEV] e\
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Quadrurg |ﬂ‘,ﬂ

Quadrupoles are focusing in one plane and A
defocusing in the other

The fieldis (B, By) = ¢(y, z) =< \
The resulting force (anFy) — k(y) _x) S F\ N
% v‘{]:ff

Need to alternate focusing and defocusing in |
order to control the beam, i.e. alternating R \| K

gradient focusing ~N ?ﬂ S
From optics we know that a combination of two \ ==

lenses with focal lengths f; and f, separated by a

distance d q 1 1 d | - | |

IR TR AR ]

1
If f, = -f,, there is a net focusing effect, i.e. —
f1 2
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B From Gauss law of magnetostatics, a vector potential exist

V.-B=0 — JdA: B=VXxA
B Assuming a 2D field in x and y, the vector potential has only one
component A.. The Ampere’s law in vacuum (inside the beam pipe)

VxB=0 — dV: B=-VV

B Using the previous equations, the relations between field components
and potentials are

oV 0A oV 0A
B, =—— = 8, By=———=— i

ox oy oy Ox
= . . « . . . yA
S 1Le. Riemann conditions of an analytic function con
;E; There exist a complex potential of z = x+iy with a r.
- . . . . .
£ power series expansion convergent in a circle with
2 radius |z| = r. (distance from iron yoke)

Az +1iy) = As(x,y) + iV (z,y) = Z Knz' = Z()\n + i) (x + iy)"

n=1

4
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Multipc

B From the complex potential we can derive the fields

, 1,
By+sz:—%(A (x,y) + iV (z,y)) Zn n + pn)(
B Setting b, = —n\,, a,=nu,
O
: : : 1
B, +1B, = E (bp, — tay,)(x +1y)"
n=1

B Define normalized coefficients

/ bn n 1, = Qn 1

n 10— 4BO T 1074By Y

on a reference radius r,, 10 of the main field to get

. _ . + 1y
B, +iB, = 10~*B D —ial ) (Z
y—|‘l 07;( n Zan)( ro

B Note: n'=n-1 is the US convention

)
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T+ 1y)

n—1

n—1
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Mag; I

B 2n-pole:
dipole quadrupole sextupole octupole ...

n: 1 2 3 4

ry 2008

B Normal: gap appears at the horizontal plane
B Skew: rotate around beam axis by #/2n angle

B Symmetry: rotating around beam axis by a/n angle,
the field is reversed (polarity flipped)

USPAS, Janua

Motion,

11



@J Equatic

B Consider s-dependent fields from dipoles and normal

quadrupoles B, = By(s) — g(s)z, B, = —g(s)y
AP
B The total momentum can be written P = Py(1 + —)

P
P, . .
B With magnetic rigidityBO 0= ~Yand normalized grad1ent
q

S
k(s) = 9(s) the equations of motion are

Bop S
y I/T\\ I/ 1 AF\\
r’ — | k(s) = e = !
\(O( ) \\QE)_ﬁzl
:t/’+/<( )y = 0

B Inhomogeneous equations with s-dependent coefficients

B Note that the term 1/p? corresponds to the dipole week
focusing

Transverse Motion, USPAS, January 2008

B The term AP/(Pp) represents off-momentum particles

i
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Hill’s

B Solutions are combination of the ones from the
homogeneous and inhomogeneous equations

B Consider particles with the design momentum.
The equations of motion become

"+ K.(s)x = 0
0

'+ Ky(s)y =

Wltth(s) = — (k(s) — p(i)2> , Ky(s) =k(s)

B Hill’s equations of linear transverse particle motion

George Hill

B Linear equations with s-dependent coefficients (harmonic
oscillator with time dependent frequency)

B In a ring (or in transport line with symmetries), coefficients
are periodic K,(s) = K,(s+C), Ky(s) = Ky(s+C)

B Not straightforward to derive analytical solutions for whole
accelerator

Transverse Motion, USPAS, January 2008
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. : v*r]
Harmoni 4
0 0 0 B Consider K(s) = k, = constant
w4+ ko u=0
B Equations of harmonic oscillator
with solution
\f > 5 $u u(s) = C(s) u(0)+ S(s) u'(0)
' ! u'(s) = C'(s)u(0)+ 5 (s)u'(0)
with
Cls) = cos(\/kos) , S(s) = \/1/70 sin(v/hos)  fork,>0
C(s) = cosh(y/|kols) , S(s) = \/%sinh(\/\kds) for k, < 0
0

m Note that the solution can be written in matrix form

@’((?)) N (CC” ((i)) SS ’((i))) (5’((%))>

Transverse Motion, USPAS, January 2008
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Matrix

B General transfer matrix from s, to s

(1), =0 (2), = (S50 50) (),

m Note that det(M(s]so)) = C(s]s0)S"(s]s0) — S(sls0)C" (s]s0) = 1

which is always true for conservative systems

I 0

B Note also that M(sqg|sg) = 0 1 =7

B The accelerator can be build by a series of matrix multiplications

M(sn|se) = M(sp|sn-1) ... M(s3|s2) - M(s2]s1) - M(s1]|s0)

\ 7
4

Transverse Motion, USPAS, January 2008

s, S, S, ees S, S o from s, to Sy,
S, S '
from s, to s,
N— J
——
from s, to s,
— B

——
from s, to s,
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Symme

B System with normal symmetry

S
>
a b a b
) )
~— _
a’+bc  bla+d)

_ . _ 2 __
Mior = M- M =M _(c(a+d) d2+bc)

B System with mirror symmetry

~ " —~ N~ Y ~
we(n) et
c d c a
N— 7
d+0b 2bd
a C
Mtot—MT'M— ( 20,0 ad—l—cb) y
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4x4 Matri

B Combine the matrices for each plane

(20) = (@0 F)(

XL
2ty

(o) = (@i 36) G

to get a total 4x4 matrix

r'(s) | _ [ Culs). Si(s) .0

o) | 7100 o

\v'(s))  \=0__ 0 Cs)
v

)
)




@ Transfer n m”s

B Consider a drift (no magnetic elements) of length L=s-s,

(wi)= (o *3™) (i) Mantobo = (o *5*)

L

A

u(s) = uo+(s— Sojug = ug + Luyg

u'(s) = g

B Position changes if particle has a slope which remains unchanged.

.
oooo
.

Transverse Motion, USPAS, January 2008

Real Space Phase Space
18



(De)focus

B Consider a lens with focal length +f

i

u(s)y (1 0) (uo M (10
(u/(8)> — (ZF% 1) <u6) lenS(S‘SO) :F% 1
B Slope diminishes (focusing) or u’,
(defocusing) for positive position, which remains
unchanged.
N\
Before .......... .
ey l
u(s) = '

Transverse Motion, USPAS. Tanuarv 2008
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Quadr i
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Transverse

B Consider a quadrupole magnet of length L = s-s,,.
The field is

By = —g(s)x, By =—g(s)y

B with normalized quadrupole gradient (in m-2) | &

~ g(s)
k(s) = B—op

The transport through a quadrupole is

() - (i i) ()

20



(De)foc

B For a focusing quadrupole (k>0)

Motion, USPAS, January 2008

Transverse

i

B By setting kL — 0

cos(vVkL) % sin(vkL)
Maqr = . K
—Vksin(vVkL)  cos(vVkL)
B For a defocusing quadrupole (k<0)
_ — _
Mop = cosh(+/|k|L) T sinh(4/|k|L)
V| k| sinh(+\/|k|L) cosh(+/|k|L)
1 0 1 O
MQF,QD — ( ) — ( 1 > — Mlens
—kL 1 -7 1

B Note that the sign of k or fis now absorbed inside the symbol

B In the other plane, focusing becomes defocusing and vice

versa

21
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B Consider a dipole of (arc) length L.

.. . . 1
B By setting in the focusing quadrupole matrix k = — > 0 the
transfer matrix for a sector dipole becomes P

cos 6 sin 0
Msector — ( 1 P >

—5 sinf cosd

L arc length
with a bending radius 0 = — 90° g0 L

H In the non-deflecting plane 1 — 0 /
: p
- 1 L

Msector — (0 1) — Mdrift

- B This is a hard-edge model. In fact, there is some edge
. focusing in the vertical plane

=

“ B Matrix generalized by adding gradient (synchrotron magnet)®

y

o

se Motion, USPAS, Janu
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/\
\
\
\ ¢
\
\
\
1
o
|
—
x

Consider a rectangular dipole with bending angle 8. At each edge of
length AL, the deflecting angle is changed by
AL Otan?

«

. : : P P 1 tano
i.e., it acts as a thin defocusing lens with focal length — =

/ p

The transfer matrix is Mrect — Medge : Msector ) Medge with

1 0
Medge = | —tan(d) 1
p

For O<<1, 5=0/2

i

In deflecting plane (like drift), in non-deflecting plane (like sector)

1 psinf cosf  psinb
Mgrect = (O P 1 )My;rect — (—%Siﬂ@ COSQ) 2
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)|

B Consider a quadrupole doublet,
i.e. two quadrupoles with focal

lengths f; and f, separated by a

distance L.

B In thin lens approximation the
L transport matrix 1s

1 0\ /1 L 1 0 11— L L
Mdoublet — (_L 1> (O 1) <_L 1) — Lfl 1 L
f2 f1 o  fa

1 1 1 L
with the total focal length — =

1 S I f2—f1 Jo
1 L

° B Alternating gradient focusing seems overall focusing

%)
=
(o]

e Motion, USPAS, January 2008

" W This is only valid in thin lens approximation 2
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/ V \ B Consider defocusing quad

“sandwiched” by two focusing
quads with focal lengths =+ f.

' } \ ' B Symmetric transfer matrix from

center to center of focusing quads

\ J\L
Y

L L Mropo = Muqr - Maitt - Maqp - Mayitr - Muqr
with the transfer matrices

g 1 0 1 L 1 0
> Muqr = ( 1 ) , Marigs = ( > , Mqagp = (1 )
é B The total transfer matrix is

L2 L

g FODO - L 1 L L2 |
—ap—357) l-3pm )




Outl

B General solutions of
Hill’s equations
Floquet theory
B Betatron functions
B Transfer matrices
revisited
General and periodic cell
B General transport of
betatron functions
Drift
Beam waist

B Normalized coordinates

Transverse Motion, USPAS, January 2008

i
B Off-momentum particles

Effect from dipoles and
quadrupoles

Dispersion equation
3x3 transfer matrices
M Periodic lattices in circular

accelerators

Periodic solutions for beta
function and dispersion

Symmetric solution
B Tune and Working point
B Matching the optics

26



QX Solutic A
0

" + K, (s) x
y' '+ Ky(s)y = 0

B Betatron equations are linear

with periodic coefficients
Ky(s) = Ku(s+C), Ky(s)=Ky(s+C)

B Floquet theorem states that the solutions are

u(s) = Aw(s) cos(1(s) 4 1)

where w(s), Y(s) are periodic with the same period

w(s) =w(s+C), ¥(s)=v(s+C)

B Note that solutions resemble the one of harmonic oscillator

u(s) = Acos((s) + vo)

B Substitute solution in Betatron equations

Motion, USPAS, January 2008

g\
_|_
=

(5) u = AWy +wy") sin(Y+1g) + A(w” —wip + Kw) cos(y +1)g) = 0

0 0

Transverse

27
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B By multiplying with w the coefficient of sin
2w/w¢/ _I_ w2¢// — <w2¢/)/ — O
B Integrate to get ¢ = / ds

w?(s)

B Replace ¢ in the coefficient of cos and obtain
w? (w”" + Kyw) =1

B Define the Betatron or twiss or lattice functions (Courant-

d Snyder parameters)

B(s) = w(s)

__1dB(s)

: als) = 2 ds

: 1+ a?(s

V(s) = (&)

= 5(8) 28
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B The on-momentum linear betatron motion of a particle is

described by

u(s) = Vef(s) cos(y(s) + o)

i

B(s)’ 1+ a(s)?

with «, 3, ~ythe twiss functions a(s) = — 5 0 V= 30s)

ds

Y the betatron phase v (s) = 3(s)

and the beta function 3 is defined by the envelope equation
Qﬁﬁﬂ . 6/2 _1_452[( — 4

B By differentiation, we have that the angle is

€

B(s)

u'(s) =

(sin(w(s) + o) + a(s) cos(¥(s) + o))

29
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B Eliminating the angles by the position and slope we define
the Courant-Snyder invariant

vu? + 20uu’ + Bu't =€
B This is an ellipse in phase space with area me
B The twiss functions «, 3, v have a geometric meaning

PV e =
B The beam envelopeis [ —~ T
E(s) = \/@ \/E{\/ﬁ _____ _}a €
& AN B
- i \ ! >

B The beam divergence

A(s) = very(s)

Transverse Motion, USPAS, January 2008



General 0

B From equation for position and angle we have

cos((s) + p) = \/euw , sin(vp(s) + o) = 5(€S)u/ 4 O;(;()S)u

B Expand the trigonometric formulas and set ((0)=0 to get
the transfer matrix from location 0 to s

(i) = Mo (30)

s with

g/\/lg B %‘?(COS A + ag sin Ay) V B(s) 8 sin Ay

5 —S8 7 | (ap—a(s))cos AYp—(1+aga(s))sin A Bo_ _ .

g /505 5] (cos Ay — g sin Ay)
3

E and A = 95 the phase advance

o B(s) 7



Periodic mﬁ

e Motion, USPAS, January 2008

Transvers

B Consider a periodic cell of length C
B The optics functions are Gy = B(C) =3, ap=a(C) =«

© ds
and the phase advance | = 30
0 S

B The transfer matrix is

(Cos,u + asin p [3sin )
Mo = : .
—y sin i COS [t — asin [

B The cell matrix can be also written as

Mec =Zcosp+ Jsinpu
_ ((1) ?) and the Twiss matrix |J = < “ g )I

32
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©) Stabilit 0

B From the periodic transport matrix Trace(M¢) = 2 cos
and the following stability criterion

'Trace(Mco)| < 2

B In a ring, the tune is defined from the 1-turn phase
advance 1 ds

“T w6
i.e. number betatron oscillations per turn

B From transfer matrix for a cell mi1 M2
Mo =
mo1 M2

Motion, USPAS, January 2008

we get

B 1 . 192 B mi11 — Moo o ™Mo
(M1 +ma2), B=—=, a= , y V= T
2 SIN 4 281N L sin

33
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O] Transpot 0

B For a general matrix between position 1 and 2

mi1 M2 . 29 —mi2
M, s, = and the inverse M., _.,, =
2 1

o1  M22

B Equating the invariant at the two locations

2 / 12 2 / /2
€ — ’782u82 —l_ 2a82u82u52 _|_ 58271’32 T /y51u51 _I_ 2aSluslusl _|_ ﬁslusl

and eliminating the transverse positions and angles

2 2
3 miq —2my11ma2 mig &
8} = | —mi11m9o1 Mi11Meoo + M12Mo1 —M22M12 8}

2 2
v/ ., ma 2mi22may s v/

Transverse Motion, USPAS, January 2008
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B Consider a drift with length s

i

B The transfer matrixis ~ M gpige = ((1) i)

B The betatron transport matrix is

B(s)
a(s)

v(s)

Transverse Motion, USPAS, January 2008

from which

By — 250 + 5°70
o — 570

0

A

1 —2s s2
0 1 —S
0 0 1
Y
p
>
a S

35



OX simplified mq 0
p At

B Consider the beta matrix B = ( g —a> the matrix

mi11 M2

Mo = ( >and its transpose M7, = (m” m21>

M It can be shown that
T
BQ — M1_>2 . Bl ‘ M1_>2

B Application in the case of the drift
. . T . 1 s ﬁ() — 1 O
B = Marite - Bo - Magire = (0 1) (—ao Y0 ) <s 1>

and B (Po—2sa0+ s —ao + 8%)
—Q 1 870 Y0

Transverse Motion, USPAS, January 2008
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Exampl
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Transvers

B For beam waist o=0 and occurs
ats= o,/ Y,

B Beta function grows
quadratically and is minimum in
waist §2

B(s) = 504‘%

B The beta at the waste for having beta minimum

i

in the middle of a drift with length L is

B The phase advance of a driftis p =

which is /2 wheng, —

als)
d o
L
6() — 5
L/2 g 7
o Bl e,
. Thus, for a drift [ =< 7




Effect o

with momentum P,+AP?

B Consider a dipole with field B and
bending radius p

B Recall that the magnetic rigidity Bp = —

and for off-momentum particles

orbit)

Transverse Motion, USPAS, January 2008

P0+AP Ap_

B Up to now all particles had the same momentum P,
B What happens for off-momentum particles, i.e. particles

Py

q
AP

B(p+ Ap) = PR

0
B Considering the effective length of t

AP
A = —0——
IS0

P
he dipole unchanged

A0 Ap AP

Op =less =const. = pAl+0Ap=0= — = —— = ———

0 p Py

i

B Off-momentum particles get different deflection (different

38
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B Consider a quadrupole with gradient G
B Recall that the normalized gradient is

_ 4G R A
PO P, ~_ S~._ —
and for off-momentum particles
A~ W Ap_ a6 AP \
AP P, P,

B Off-momentum particle gets different focusing

Ak = —g2F

P

B This is equivalent to the effect of optical lenses on
light of different wavelengths

Transverse Motion, USPAS, January 2008
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Disper I

B Consider the equations of motion for off-momentum
particles 1 AP
p(s) P

B The solution is a sum of the homogeneous equation (on-
momentum) and the inhomogeneous (off-momentum)

z(s) = zu(s) +x1(s)
B |n that way, the equations of motion are split in two parts
vy + Ky(s)rg = 0
1 AP
p(s) P z1(s)

B The dispersion function can be defined D(s) = AP/P

" + K, (s)x =

v} + K,(s)x; =

B The dispersion equation is

D'(s) + Ka(s) D(s) = 5 )

e Motion, USPAS, January 2008

Transvers




Dispet

B Simple solution by considering motion through a sector

Motion, USPAS, January 2008

Transverse

dipole with constant bending radius p

1
B The dispersion equation becomes D" (s) + — D(s) = -

B The solution of the homogeneous is harmonic with

frequency 1/ p

B A particular solution for the inhomogeneous is D,, = constant
and we get by replacing D, = p
B Setting D(0) = D, and D’(0) = D,’, the solutions for

dispersion are

D(s)

D'(s)

Dy COS(E) + Dy p sin(
p

D

—sin(=) + D} cos(

P

S
0

S
0

| ®

)+ sin(7)

0

)+ p(1 = cos(2))

i

1
P

41
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B General solution possible with perturbation theory and use of Green

functions
B Fora general matrix M = ( g,((i)) SS (<§))/

b6 =5 [ s cps) 5

so P(3) so P(5)

B One can verify that this solution indeed satisfies the differential
equation of the dispersion (and the sector bend)

) the solution is

ds

B The general betatron solutions can C(s) S(s) D(s)
be obtained by 3X3 transfer Msys = [ C'(s) S'(s) D'(s)
matrices including dispersion 0 0 1

AP

B Recalling that 33(3) — ng(s) -+ D(S)

z(s) x(sp) D(s) Dy
z'(s) | = Maxs | '(s0) and (D’(S)) = M3sxs <D6>
Ap/p 1 1 4

Transverse Motion, USPAS, January 2008
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3x3 transfer mat !ﬂ«.’s

B For drifts and quadrupoles which do not create
dispersion the 3x3 transfer matrices are just

0

M
Mdrift,quad — 2x2 0
0 0 1

B For the deflecting plane of a sector bend we have seen that

the matrix is
cos@  psinf p(1l — cosb)

Moctor = —% sin@ cosf sin 6
0 0 1

and in the non-deflecting plane is just a drift.

Transverse Motion, USPAS, January 2008
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@J 3x3 transfer !h”’s

B Synchrotron magnets have focusing and bending included
in their body.

B From the solution of the sector bend, by replacing 1/p with

1
P
sin ¢ l—cos ¢
COS P N pK¢
B For K>0 Myr=|—-VKsiny cosv e
0 0 1
sinh ¢ __1—cosh
[ coshy V1K pIK]

B For K<0 Msyp = | /|K]|sinhty cosh ,:in—}|lK¢|

\ 0 0 1

: 1
with ¢:\/\k—|——2\l
0

Transverse Motion, USPAS, January 2008
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Transvers

B The end field of a rectangular magnet is simply the one of
a quadrupole. The transfer matrix for the edges is

1 0 O
Medge — % tan(9/2) 1 0O
0 0 1

B The transfer matrix for the body of the magnet is like for
the sector bend ~ M ect = Medge - Msect © Medge

B The total transfer matrix is
1 psinf p(1 —cosb)
Miect = | O 1 2tan(6/2)
0 0 1

45



Chromat m’,S

B Off-momentum particles are not oscillating around design
orbit, but around chromatic closed orbit

B Distance from the design orbit depends linearly with
momentum spread and dispersion AP

Tp :D(s)?

On-momentum

particle trajectory

Off-momentum
particle trajectory

Transverse Motion, USPAS, January 2008
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Period 0

B Consider two points s, and s, for which the magnetic
structure is repeated.

B The optical function follow periodicity conditions
Bo = B(so) = B(s1), @ = also) = a(s1)
Do = D(sg) = D(s1) , Dy = D'(sg) = D'(s1)
B The beta matrix at this point is 5B, = ( o _O‘O)

—Qo 0
B Consider the transfer matrix from s, to s, Mo = )
ma1  Ma2

— m m — m m
x By = MO—>1’BO'M§_>1 — (_ﬂ(g 0) _ ( 11 12) (_ﬁo 0) < 11 21)
0 70 mo1  MM22 %) Y0 mi2 122

B The solution for the optics functions is

2m12
Bo = > >
\/2 — miq — 2m12m21 — Mooy
mi1 — Mm22

(870) —

2 2
\/2 — myq — 2m12m21 — Mooy

with the condition 2 — m7; — 2miama; — m3y > 0

Transverse Motion, USPAS, January 200
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Periodic !ﬂ’,ﬂ

B Consider the 3x3 matrix for propagating
dispersion between s, and s,

Dy mi1 Mi2  Mi3 Dy
Dy | = | ma1 moy Mo Dy
1 0 0 1 1

B Solve for the dispersion and its derivative to get

mo1mi3 + mosz(1l — mqq)
2—mi11 — Mmoo

Dy =

/
mi2Dy + mys
Dy =

1—77211

with the conditions mii 4+ mas #2 and mq #1

e Motion, USPAS, January 2008
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Transverse Motion, USPAS, January 2008

B Consider two points S,and s, for which the lattice is mirror
symimetric

B The optical function follow periodicity conditions
a(sg) = a(sy) =0
D'(sg) = D'(s1) =0
B The beta matrices at S;and s, are 5o = (ﬁoo 1 /050) B, = (%1 | /Oﬁl)

B Considering the transfer matrix between S,and s,

_ R AT B 0 _ ([ Mi11 Mi2 Bo 0 mip  ma21
Br = Mo—rBo- Moy = (0 1/51) - (m21 m22> (0 1/50) <m12 mzz)
B The solution for the optics functions is
mM12M22 1 my2

Bo=4/— and (1 = —

mo1Mq1 50 mai

with the condition 12 0 and —2 >0
mai mi1
49
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Transverse

B Consider the 3x3 matrix for propagating
dispersion between s,and s,

D(s1) mi1 M1z M13 D(sop)
0 = | m21 Moz  Mo3 0
1 0 0 1 1
B Solve for the dispersion in the two locations
m23
D _ 23
(s0) ot
D(s1) = - T m13
ma2i

B Imposing certain values for beta and dispersion,
quadrupoles can be adjusted in order to get a
solution

i
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ansvers

B Consider a general periodic structure of length 2L
which contains N cells. The transfer matrix can be

written as
M(s+ N -2L|s) = M(s + 2L|s)"

B The periodic structure can be expressed as
M =Tcospu+ Jsinpu

with J = (_O; _6& .
B Note that because det (M) =1 — By —a® =1
® Note also that J° = —7
B By using de Moivre’s formula

MY = (ZTcosp+ Tsinp)® =T cos(Np) + T sin(Np)
B We have the following general stability criterion

'Trace(M™)| = 2cos(Np) < 2 }




3X3 FOI I
B Insert a sector dipole in between the quads and

consider 6=L/p<<1
B Now the transfer matrix is Muropo = Muagr - Msector - MuaD

which gives

1 0 0\ (1 L £\ /1 0 0
Murobo= |5 1 0] 0 1 g -5 10
00 1/ \o o0 1 00 1
¢ and after multiplication
2 L L
E : _L7 - L L (20) L
g Muropo = | =% 1+ 5 Z(1+55)

52



i

B Introduce Floquet variables
Y 1 ds

="t =M _ 9 SR, g=

NE do VBT v v ) B(s)
B The Hill’s equations are written FP5) + 17U =0

B The solutions are the ones of an harmonic oscillator
A

AU
uy cos(vo) —>
(U’) = Ve <— Sin(u¢)) é% {}’{
B For the dispersion solution v = %A—Pp , the

inhomogeneous equation in Floquet variables is written

d2D . 12 33/2
W +v°D = — p(s)
B This is a forced harmonic oscillator with solution
_ B(s)v [ +/B(o)
D(s) = 252 § L2 coslu(i(s) = o(a) + m))do
B Note the resonance conditions for integer tunes!!! 53
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B In a ring, the tune is defined from the 1-turn phase

y 2008

=~
@©

Motion, USPAS, Janu

Transverse

advance

1 ds

i.e. number betatron oscillations per turn

B Taking the average of the betatron tune around the

ring we have in smooth approximation

C R
=G T

B Extremely useful formula for deriving scaling laws

B The position of the tunes in a diagram of horizontal
versus vertical tune is called a working point

B The tunes are imposed by the choice of the
quadrupole strengths

B One should try to avoid resonance conditions

i
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—-+~=7 Tunability: 1 unit in

s gy ey,
68 - * . T R N ) _’_’\,:'—“I'—’l’,"",’/' . . . . .
e et 7 o7 1 horizontal, 3 units in vertical
66 LSemT T T PR B, - . .
eom Tt et g e ] (2 units due to bump/chicane
64 ol ml L IR S T t i
""""""" P St Mty sty e A erturba lOIl)
| o m-- [ __,,—"-'-__-’ 1 ,rf~~ . i p
IS AR = S R
e T R
o sglons e b A2 | — Structural resonances (up
: EANN n\\Li{,:::.::;,‘:'\;T:::jf-_-/_,;h(rq,e,h)
S S Rl P N to 4th order)
I NV I I, —All other resonances (up to
25 [ . e T T 3ed ord
S>saf T g% ey 1 3rd order)
3 N N I I e
% s ‘\t\;\::‘b_ ( /':!\ q’;\xz N : : e -/,E/j
S el TR e A LTS AT
g 4L N T TG lT 77 1 @ Working points considered
& R e 10 Tl v s 13 ek it
c:’); g '_(T;fz’)',_-:‘,7‘,"\:/-,-_’_%.__“_:::‘ ,"” : \\\:/’r-'“*'-.. ] @ (6030,5080) - Old
15 ! N AR DN ]
Dol e IS e 0 (6.23,5.24)
a2t oo PR -
LT e T ¢ (6.23,6.20) - Nominal
> 4 - | L | i P TS B S R L=
G IO A * (6.40,6.30) - Alternative
orizon une 55
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B Optical function at the entrance and end of accelerator may be fixed (pre-

Transverse Motion, USPAS, January 2008

injector, or experiment upstream)
Evolution of optical functions determined by magnets through transport
matrices

Requirements for aperture constrain optics functions all along the
accelerator

The procedure for choosing the quadrupole strengths in order to achieve
all optics function constraints is called matching of beam optics

Solution is given by numerical simulations with dedicated programs
(MAD, TRANSPORT, SAD, BETA, BEAMOPTICS) through multi-variable

minimization algorithms
magnet structure
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